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SUMMARY

Tur FRACTURE of ductile solids has frequently been observed to result from the large growth and
coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile
stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in
continuum plasticity. First, a variational principle is established to characterize the flow field in
an elastically rigid and incompressible plastic material containing an internal void or voids, and
subjected to a remotely uniforn stress and strain rate field. Then an approximate Rayleigh-Ritz
procedure is developed and applied to the enlargement of an isolated spherical void in a non-
hardening material. Growth is studied in some detail for the case of a remote tensile extension
field with superposed hydrostatic stresses. The volume changing contribution to void growth is
found to overwhelm the shape changing part when the mean remote normal stress is large, so that
growth is essentially spherical. Further, it is found that for any remote strain rate field, the void
enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the
ratio of mean normal stress to yield stress. Some related results are discussed, including the long
cylindrical void considered by F. A. McCri~Ntock (1968, J. appl. Mech. 35, 363), and an approxi-
mate relation is given to describe growth of a spherical void in a general remote field. The
results suggest a rapidly decreasing fracture duetility with increasing hydrostatic tension.

1. INTRODUCTION

THE FrRACTURE of ductile solids has frequently been observed to be the result of the
growth and coalescence of microscopic voids, both in nominally uniform stress
fields (RoGERs, 1960 ; GURLAND and PLATEAU, 1963; BLunM and MoRRISSEY, 1966)
and ahead of an extending crack (BEacurwm, 1963). RosENFIELD (1968) has recently
surveyed metallurgical aspects of this fracture mechanism. Rogers explains that
the central portion of the cup and cone fracture which occurs at the neck of a
specimen is produced by the coalescence of internal voids which grow by plastic
deformation under the influence of the prevailing triaxial stress system. To begin
development of a comprehensive fracture criterion, the relation between the growth
of a void and imposed stress and strain must be found. McCrLiNTOoCK (1968) has
presented a start on the problem through his analysis of the expansion of a long
circular eylindrical cavity in a non-hardening material, pulled in the direction of
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its axis while subjected to transverse tensile stresses. The noteworthy result is that
the relative void expansion per unit applied strain increment increases exponen-
tially with the transverse stress. Our present work seeks to determine the relation
between void growth and stress triaxiality for a more realistic model, i.e. an isolated
spherical void in a remotely uniform stress and strain rate field. We treat the void
growth problem as in the domain of continuum plasticity, in accord with the
contemporary view of ductile fracture as described by MEAkIN and Prrem (1963)
which considers separation as a kinematical result of large but localized plastic
deformations.

The non-linearity of field equations seems to exclude exact analyses for all but the
one-dimensional case studied by McClintock. Thus we start by deriving a varia-
tional prineciple governing cavity expansion in an infinite rigid—plastic medium, and
employ a Rayleigh—Ritz procedure for approximate solutions. The Bubransky
and VipexNseEK (1955) variational methods for infinite regions could be adapted to
our present purposes, but we find that the procedure used in Section 2 requires
somewhat weaker assumptions on the behaviour of solutions at large distances.
While the formulation applies either to hardening or non-hardening materials, we
present applications to the latter type only.

2, VariarioNal Prixcrrrr ror Vorp Growrtn 1N Ricm-Prastic MATERIALS

Consider an infinite body of an incompressible rigid-plastic material (either
perfectly plastic or strain hardening) containing an internal void or voids with
bounding surface §,. We assume that the prior deformation history is known so
that the current void boundaries and flow stress at each point are specified. At the
current instant the material is subjected to a uniform remote strain rate field
¢;;°. This determines the remote deviatorie stress state s;; and, in addition, the
current remote mean normal stress o® is specified so that

g™ = §% 4 0% Jyy. (1)

We seek to determine the current velocity field throughout the material and, in
particular, the growth rate of the void(s). Consider any velocity field u; satisfying
incompressibility and agrecing with the remote strain rate:

€5 = % (g -} Wjug) — €™ as  wxpay — 003 € = O, (2)

The yield surface in stress space at cach point of the material is assumed convex
with normal strain rate increments so that a deviatoric stress state s;; (&) can be
associated with each ¢;; in such a manner that s; (€) é; is unique. Note that
convexity and normality both follow from and imply the basic inequality of
plasticity

[si7 (&) — s15%] é15 = 0. (3)

where s;;* is any stress state within or on the current yield surface. The inequality
follows from Hirr’s (1950) principle of maximum plastic work, from DRUCKER’S
(1951) stability postulate, or from other roughly equivalent starting assumptions
in plasticity.

Now define a functional @ () of any velocity ficld 4; satisfying (2) as
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Qi) = [ s &) = 51 ag aV” — oy [ ney as. @

v Sy

Here V" denotes the infinite volume exterior to the void(s). In the integral over the
void surface, n; is a unit normal drawn into the material so that ¢;;® times the surface
integral represents the work rate of the remote stress field on the distortion of the
void interior. The following convergence assumptions are essential to the sub-
sequent development. Let S, denote some imaginary spherical surface drawn in
the material exterior to the void(s). Then it is assumed that all fields ¢;; considered,
including the actual field, approach ¢;;® sufficiently rapidly so that, if the super-
scripts 1 and 2 refer to any two of these fields and the superscript A denotes the
actual field, then

lim (UijA — a®) n; (02 —a)dS =0
Sg—> 0
Se (
and f [si7 (€1) — $i5%°] (€452 — €i3°) AV is bounded.
v

The second assumption is satisfied if @; — é;° o; falls off faster than R0
where R is radial distance and 8§ is any positive number. The first is certainly
satisfied if @; — €é;;° a; falls off as E-2, and is most likely satisfied under much less
stringent conditions. The lack of knowledge of the actual field makes more precise
statements impossible, but we note that corresponding convergence requirements
in a two-dimensional case discussed subsequently, for which the solution is known,
are satisfied within a wide margin, The latter convergence assumption is sufficient
to show the cxistence of the volume integral of (4) for the perfectly plastic case and
to show that if it diverges in the strain hardening case, it does so in an essentially
trivial way. To see this, rearrange terms so that

f [s17 (&) — s45®] é5 AV == f [si7 (&) — s3] (45 — é5®) AV
1 4 14

(6)
+ | [s05 (&°) — syy®] é5®° dV + | [s55 (&) — 35 (¢%)] é* dV.
I J

The integral on the left is non-negative and the third integral on the right is non-
positive by (8), and the first integral on the right is bounded by hypothesis. For
perfect plasticity, §;; (¢®) = s so that the volume integral on the left cannot
diverge. For strain hardening, convergence is tied to the second integral on the
right. But its integrand is independent of the assumed field ¢; and, if divergent,
one may show that a convergent integral results in (4) if one subtracts out the
second integrand on the right in (6) above. This point is not pursued further,
since it affects neither the computation of @ (1) — @* nor the validity of the
minimum principle.
Again letting the superscript A refer to the actual field,
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Q (ir) — Q = f {Lsir (&) — sV i — [ss™ — suy®leg*yaV
V

— f (03 — o) ng (5 — ™) dS
S

v

since oy 7y vanishes on the void surface. But by an application of the principle of
virtual work to the infinite region, as justified by the first convergence assumption
of (5),

— ((O.ijoo — (TijA) n; (i — 1'17’/\) as TJ (S,;j"o — .S’UA) (éij — é;j'\) dV . (8)

Sy T

Upon combining terms above, one finds

Q (u) —- Q“\ = [ [.\’«U (E) — S‘.ijA] éi]’ dV > 0, (9)

o/

since the integrand is non-negative by the fundamental inequality of (8). The
resulting minimum principle is that no assumed field can render the functional
Q (i1) smaller than its value for the actual flow field.

We shall employ the minimum principle as a basis for approximate solutions
via the Rayleigh—Ritz method. In particular, an assumed flow field will be repre-
sented in the form

W = P & + qu WD A+ gy A L. g W (10)

where each %;'® is a specified incompressible velocity field approaching zero at
infinity so as to meet convergence requirements. The set of constants g giving the
‘best’ approximation are chosen to minimize the functional Q (1) = Q (¢1. g2, . . .. gu).
Note that in computing derivatives for the minimization,

MQL;L?’?) éy =0, (11)
0qx;

by normality, since the stress derivative is tangent to the yield surface. Thus the
‘best’ set is given by

f [.S’ij (([1, Q2o v v vy (]n) - S’ijw] éij(k) dl — ()'i]'mf n; ’Il/j(k) s
vV Sw
fork =1,2,...,n. (12)

Now let q1%, go*, . . . denote a solution of these equations with s;* being the corre-
sponding deviatoric field. By virtual work, the surface integral is transformed to

G'Uwf n; ;8 A4S — f (04" — (szA) ng ;8 dS

Sy Sy

- — f (.\’Um - .ﬂ';jA) s'ij(k) ayv. (13)

v
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Thus. f (s55* — i) €@ dV = 0, (14)
Vv

so that the difference between the actual and the approximate deviatoric fields is
orthogonal, in a weighted sense, to each assumed field.

Uniqueness of the Rayleigh—-Ritz approximation is of interest since solutions
to (12) for the ¢’s must generally be searched out numerically. Let superscripts
* and ** denote two solutions. Both must satisfy (14) and thus

f (S‘ij* —_ Szj**) éij(k) dV = 0. (15)
v

Multiplying by gz* — ¢x** and summing on k,

f (si5% — s56%%) (é* — éy**)dV = o. (186)
14

Now the integrand in this equation is non-negative by (3), so that it must vanish
everywhere. Hence, for yield surfaces containing no corners, the direction of the
strain rate is fully unique at every point. Since both strain rate fields are derivable
from a velocity field in the form of (10), in general, for a finite number of terms,
coineidence of direction can be achieved only if gz* = gx**. This is indeed the case for
velocity fields employed subsequently, but no all-inclusive statement can be made
since uniqueness of strain rate direction is the most that can be asserted even for
exact solutions, without extra considerations.

3. GROWTH OF A SPHERICAL VOID IN A UNI1ax1AL TENSION STRAIN
Rare FieLp

As a first application of the variational principle, consider a spherical void of
radius Ry as in Fig. 1, and suppose that the remote strain field consists of a tensile
extension at the rate ¢ in the a3 direction, with contractions at the rate } ¢ in the
21 and x directions (as required by incompressibility). The remote deviatoric
stress state $;;° then corresponds to that of a tensile test, and it is supposed that in
addition the remote mean normal stress o® is specified. Now for the assumed
incompressible velocity field to be employed in the variational approximation, it is
clear that any assumed field (as well as the actual field) can be split into three
parts: (i) a velocity field resulting in a uniform strain rate field ¢;;°, so as to meet
remote boundary conditions, (ii) a spherically symmetric velocity field correspond-
ing to a change in volume of the void but no change in shape, and (iii) a velocity
field, decaying at remote distances, which changes the void shape but not its
volume. Hence we write in the form of (10),

Wy = €® x5 - Du, 2 + Eu=, (17)

where D and E, playing the role of the ¢’s in our general development, are constants
to be determined, 4,2 is a spherically symmetric volume changing field, and #;E is a
shape changing field which preserves void volume.

Incompressibility and spherical symmetry require that the volume changing
field be
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F1ec. 1. Spherical void in a remote simple tension strain rate field. Later used for a void in a
general remote field, with o the greatest, ag the Ieast, and @3 the intermediate prineipal strain
rate dircetions.

o (Bo\?
uP = é (7{-) &, (18)
where we have chosen the constants in this expression so that D may be inter-
preted as the ratio of the average strain rate of sphere radii to the remotely imposed
strain rate. Thus if we use the symbol Ry to represent the average radial velocity
on the void boundary, D will cqual Ro/éR¢ (note that the other velocity terms in
(17) result in zero average radial velocity). The approximation is involved with
choice of the shape changing field #;F and fortunately, as we shall see, results are
not very sensitive to the particular choice. We assume that spherical surfaces
concentric with the void are moved by this field so as to become axially symmetric
ellipsoids of the same volume in a small time interval. This constraint is met by
deriving ;¥ from a strcam potential,

gk = 77L,, bﬂﬂ , B — — -J o ?%E . (19)

R2sin ¢ d¢ ¢ Rsing dR

having the form

YE = L éRPF (R) sin? ¢ cos ¢, where F' (Ry) = 1, (20)

with I (R) otherwise arbitrary, but resulting in vanishing strain rates at infinity.

The choice of constants in (20) is such that the net radial velocities on the void
boundary, in the direction of remote tensile extension and in the transverse diree-
tion, are computed from (17) as
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g (Ro, 0) = (D + 1 4 E)éRy and
1+ E (1)
— ——-~+ ) g

9

1

tg (Ry, 3m) = (

respectively. Thus the assumed velocity field deforms the void interior with a
mean dilatational strain rate D¢, on which is superimposed an incompressible
extension strain rate (1 4 E) ¢ in the remote tensile direction. Several different
choices of the function F (R) of (20) were emploved for the numerical calculations,
as described subsequently.

The amplification factors IJ and E are determined so as to minimize the fune-
tional @ (1) = Q (D, E), and this leads to two equations in the form of (12):

W

J‘ [si; (D, E) — Sijw] éijD dV = ¢® f n; P dS,
V

v

(22)
f [éz] (1), E) — Sijw] éijE aV = $35% f n; &].E ds.
v v

Here, si; (D, E) is the deviatoric stress field corresponding to the assumed strain
rate field
€5 = €y (D, E)= €® -+ DéijD —+ Eéijg. (28)

Also, we have simplified (12) by noting that the deviatoric remote stress does no
work in the surface integral involving the D field and the mean remote stress does
no work in the surface integral involving the K field.

Numerical solutions for D) and E have been obtained in the case of a non-harden-
ing Mises material, with yield stress 7o in shear, for which deviatoric stresses
corresponding to a strain rate é;; are

Sif = V2 7o éi5/(ér1 x)h. (24)
Upon carrying out the surface integrals in (22), introducing spherical coordinates

in the volume integrals, and dividing through by a few constant terms, the two
equations to be solved are:

€17 €4
V2 e RO f f [(e;jz :121) B (—5:1]_&5/:;&?)«] Rsing dp dR = o%[ro, (25)
€iF 53? €34 . 2 + R() }?I (R(}) )
\/2 SR() f J. [( €1 ekl)% (ékl fklw)é} R?gin 975 dgf) dR ____5____m , (26)

where ¢y depends on D and F as in (23). The integrands are quite complicated
functions of the integration variables B and ¢, depending on the former through
the function F (R), but their detailed forms need not be given here, We note simply
that after multiplying by the factors in front, the integrals define dimensionless
functions involving only pure numbers and the unknown factors D and E, to be
set equal to the triaxiality ratio in the first case and to a pure number in the second.
Completion of the solution relies on quite lengthy numerical integrations and search
techniques. The most efficient procedure is to choose a value of D and then to
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search out the corresponding value of E so as to satisfy the second equation. Then
this D, E set is inserted into the first equation to compute the ratio of remote mean
stress to yield stress required to produce the chosen dilatational amplification D.

We have carried out detailed computations for a non-hardening Mises material,
employing six different choices for the function ¥ (R) appearing in (26) for the E
field. Remarkably, the value of D corresponding to a given ¢%/7¢ appears almost
insensitive to the particular function F (R) employed. Also, at large values of
o®/7o, D turns out to be large compared to E so that the volume changing part of
the growth overwhelms the shape changing part.

The six different functions F' (R) examined arc

FU(R) = L[5 — 3 (Ro/R)2).
Fy (R) =2 — (Ro/R)?,

Fs (R) = + — 3(Ro/RY, &
Fa(R) =7 — 9 (Ro/R) + 3 (Ro/R),

F5 () = 3 (Ro/R)® — 2 (Ro/R)S,

Fo (R) = 1 [18 (Ro/R) — 4 (Ro/R)°].

-]

Some of those were chosen because they appear in similar incompressible flow
problems for a linearly viscous material. For example, F'; (R) provides a solution
for a spherical inclusion bonded to a viscous matrix, with the inclusion given a
uniform incompressible extension strain rate field. F3(R)satisfies the same boundary
conditions, but is not admissible for a viscous material. F3 (R) is the viscous field
corresponding to a similar spherieal inclusion undergoing a uniform incompressible
extension, except that the inclusion is in smooth contact so that normal stress but
no shear stress is transmitted to the matrix. Thus, this field makes ¢y, vanish on
the void surface, a proper boundary condition for the plastic case also. Fy (R)
simultaneously satisfies both the bonded inclusion and zero shear strain rate
boundary conditions, and therefore cannot be a viscous solution. Finally, F5(R)
and Fg (&) were chosen simply because they represent somewhat unrealistic fields,
and we wished to see il even this would significantly alter the essentially identical
values of the dilatational factor D resulting for the other four fields. For example,
these fields both result in a sign reversal of it at particular values of R. Of coursc,
the best procedure would be to let the variational prineiple serve as a basis for
choice of I' (I) through the associated Kuler-Lagrange differential equation, rather
than to examine a set of different choices with only the multiplying factor E as a
free parameter. This is not as simple as it might seem. Not only is the resulting
differential equation of fourth order and highly nonlinear, but terms in the equation
depend on R, D, F(R), F'(R), and F" (R) through difficult integrals on ¢ which
cannot be evaluated in closed form.

Figure 2 gives the resulting values of the incompressible extension portion of
the void enlargement rate per unit remotely imposed strain rate, 1 + E, as a
function of D, as computed from (26) for each F (R). The first four functions I (R)
give roughly similar results for 1 - E, with differences that are large in absolute
terms but quite small compared to D over most of the range plotted. F5 (R) and
Fg (R) give a quite erratic behaviour, as might have been expected, and actually
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Relation between incompressible extension factor (1 -+ KE) and dilatational factor

(D), as computed from several assumed forms for the velocity field, for a spherical void in a

remote tensile strain field.

predict that at larger values of D the void should flatten rather than elongate in
the remote extension direction.

The dimensionless mean stress ¢®/7¢ is shown as a function of D in Fig. 3.
The solid line represents results from all six incompressible extension fields. Differ-
ences from field to field are not great enough to appear on the graph, except for a
slight broadening of the curve in the range of D between 0 and 8. For example, at

Fic. 3.

4D (or Ry/éR,)
30 ! | /
7 Result of numerical calculations,
1 from egs.(25,286), for several
25 different assumed flow fields
- as given in egs.(27). Predictions
7 of D differ negligibly from field
1 to field ———
20
|5: High triaxiality approximation,
4 D=0.283 exp(~/3o/27),
1 from eq.(37)
10 /
5_
:_ a7,
0 l]l]x(]lI|]||]|l|1=
0 1 2 3 4 5

spherical void in a remote tensile strain rate field.

Dilatational amplification factor D, as a function of mean normal stress ¢®, for a
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D = 001 the range of ¢®/r( values is from - 0-015 to — 0-086, but the curve is so
steep that all points essentially fall on the line drawn. At D == 1-0 the variation
appears greatest, with a range of %/rg from 1-40 to 1-60. At D = 3-0, the range
is from 2-70 to 2.76. The variation rapidly decreases at larger values of 1), being
in the neighbourhood of 0-5 per cent or less of the mean for ) greater than 6. The
dashed line represents the result of a large D calculation in Section 4.

4. GrowTu 1IN A GENERAL RemMorTE StraIiN RATE FIELD wrtn
Hicrr StrESS TRIAXTALITY

We have seen in Section 8 on a tensile remote field that the spherically symmetric
volume changing part of void growth far overwhelms the shape changing part
when the remote mean stress is large. A calculation is presented herc of the rela-
tion between this dilatational amplification and the remote mean stress on the
assumption that both are large. It will be seen that a simple exponential dependence
on ¢%®/7g results, and that this gives an excellent approximation to the detailed
results of Fig. 3 even at low triaxiality.

Since the calculations are relatively straightforward, it is possible to consider
the spherical void in a general remote strain rate ficld é;®, rather than just a tensile
field. Anticipating that dilatational growth dominates, we choose an assumed
velocity field involving only the contribution from the remote strain rate field and a
spherically symmetric void expansion field:

U = éy® 1y DD, (28)
where
D (2 s 0 oy B0} .
P = (3- €45 sij-) = X;. (29)

Comparing with (18), we see that the tensile strain rate ¢ has been replaced by the
factor involving the square root sign, and this is simply the ‘equivalent’ tensile
strain rate, which equals ¢ when the remote field consists of a simple tensile ex-
tension. If Ry is the average radial velocity of the void surface, the physical
interpretation of D is
>
z}j—) £ (§ éi® éijoo)% D. (30)
Ry
Of course, for large 1) the growth is nearly spherical and the radial velocity differs
little from R,.
The dilatational amplification is chosen so as to minimize the functional @,

leading to
f [se5 () ~— 845°) éP AV == o f ng 2P dS. (31)
128 Dy

For a non-hardening Mises material, the deviatoric stresses corresponding to the
assumed field are given by (24) as

G (D)= A2 7y (65 - D éP)
5 T (€5 €™ - 2D €™ &P - D2 &0 €0

(32)

Upon computing the various terms involved and simplifying, equation (31) for I
becomes
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1 i D — u/2X
W/ 5%}] f [(41)2 X — ;gw\ T T #/2;\] WA = oo, @2
2 0

where A = (Ro/R)3, df2 denotes an increment of solid angle, the outer integration
is over the unit sphere, and p is a function of position on the unit sphere given by
the ratio of the radial component of the remote strain rate to the equivalent strain

rate . . .
? B = ERRGO/(% eijm Eijm)%- (34)

Upon performing the inner integral,

————— f{log (4D? — 4Dy + 1) 2D — p] —log (1 — p)
© +plog [ (4D2 — 4Dp + 1) + 1 — Dul} dQ = o%fry.  (35)

Making the assumption that D is large, as consistent with choosing a dilatational
field alone for the assumed field, we now expand the arguments of the logarithms
in powers of .D and drop all terms of order 1/D. The terms involving I can be
integrated at once over the unit sphere, and there results

Zilog () — s [0 - wlog (1= )4 = o7, (36)
2

Solving for D, we have the high triaxiality exponential result

D = C(») exp (‘/3" ) (37)
70
where the constant C (v) (this notation will be explained shortly) is given by

Ct=tesn | f (1 =) log (1 — ) de] . (39)

The constant depends on the ratios of the remotely imposed strain rate compo-
nents, as somewhat different functional forms for u result in (84) for different remote
ficlds, We show this dependence through a Lode variable v for the imposed strain
rates, which we define as

VT T 2
where €% = éy® = ép® are the principal components of the remote ficld. This
variable lies between — 1 and + 1, with » = 4- 1 for a remote simple extension
(or biaxial compression), v == 0 for a remote simple shear, and v = — 1 for a
remote simple compression {or biaxial extensmn) To evaluate € (»), we choose
the angles @, ¢ of Fig. 1 to describe position on the unit sphere. Then if the z;, 73,
and @z axes are chosen to agree with the greatest, intermediate, and least principal

strain rate directions, respectively, one finds that

1

®o= m [v(1 —3cos?¢) + 3sin? ¢ cos 24]. (10}

Making the substitution ¢ == cos ¢ and performing the integral on @ in the solid
angle integration of (88), one finds for the constant,
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1
) 1 4 A + (42 — B (42— B
C(v) == iexp{ ! lA log( 5 ) A — (42 BZ)%J dg}
v (1 — 8£2) 3(1 — &)
where 4=1— CICERE] = IR (41)

Numerical calculations have been performed for the range of » from — 1 to -+ 1.
Remarkably, C'(v) is very nearly independent of v, and the dependence on v can be
given to within an error never exceeding 0-2 per cent by the linear relation

C(v) &~ 0279 + 0-004 v, (42)

Thus, to within about 1 per cent, the high triaxiality void growth rate depends on
the remote strain rate only through the equivalent tensile rate.

For a simple tension remote field, as in Section 3, C (v) = C (1) can be evaluated
exactly as 1-5 58 = 0-288, and D) = 0-283 exp (1/3 ¢®/27¢). This result is shown
by the dashed line in Fig. 8. It is indistinguishable from the solid line, representing
detailed calculations, at values of D greater than unity (or ¢®/r¢ greater than 1-5)
so that the high triaxiality result appears accurate even at low stress levels where
the dilatational growth does not dominate the shape changing growth at all.

Finally, we note that a similar analysis to the above could be carried out for the
case of a large negative remote mcan stress. One then finds in analogy to (37) that

D= —C(—voexp (* Y‘i,"f?) : (43)
279
Sinee € (v) is almost independent of v, for a given remote strain rate the dilatational
amplification is nearly the same under tensile and compressive mean stress.
Actually, one can obtain an even closer approximation to the detailed calcu-
lations of D) in Fig. 8 by choosing a relation between I and ¢®/r¢ which reproduces
both the correct high positive mean stress result (87) and the high negative result
(43). Itis natural to think of the two exponential tails as resulting from hyperbolic
functions at large values of their arguments, and so to choose

D= [C(v) +C(— v)]sinh (4/8 0%®/27) + [C'(v) — C (— v)] cosh (/8 02/27¢). (44)
With the close approximation to C (v) in (42), this becomes
D == 0-558 sinh (4/3 0%/27¢) -I- 0-008 v cosh (/3 a®/279). (45)

When v = 1 for comparison with tensile caleulations, this expression for 1) comes
quite close to the solid curve in Fig. 8, and the value of D = 0-008 for zero mean
stress is a close approximation to the axis crossing of the solid line (about 0-01).
Also, for a pure shear remote field, v = 0 and (45) predicts no dilatational growth
when 0% = 0. That this prediction is correct is easily seen from a symmetry
argument, for reversing all quantities in the remote shear field must reverse the
void growth rate, but the reversed remote shear field is indistinguishable from the
original remote shear field except for changes in principal directions. These remarks
suggest that (45) be viewed as a good approximation to the dilatational part of void
growth for all values of the remote mean stress and for all values of v (i.e. for all
remote strain rate ratios).
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5. Somk Reratep Rusuvrs

The exponential amplification of void growth rates by stress triaxiality, as
found here for the spherical void, has also been found by McCriNtock (1968) in his
study of the long cylindrical void (Fig. 4), stretched at a uniform rate ¢ in the

3

Fie. 4. Long cylindrical void extended in the dircetion of its axis.

direction of its axis while subjected to a remote transverse stress o,®. This pro-
blem could be solved directly from our variational principle. In view of axial
symmetry and incompressibility, the velocity field is

Uy == €3, Up = — L ér 4 (Fo -+ L éro) 7—? . (46)

where 7 is the unknown transverse velocity of the cavity boundary. The cor-
responding two-dimensional version of the functional (i) in our general develop-

ment is I

Q(u) — f [s15 (&) — s3] €15 (2mr) dr — opy™ 7o (2700), (47)

»

0
where € is the strain rate derived from the velocity field (46). Now, since the
actual velocity field has the form of (46), we get the exact answer by minimizing @
with respect to #¢, which leads to
o0
" . dr
| oo () = s 00 = e (48)
TO !
This could have been written down through a conventional equilibrium approach
by integrating the radial equation do,./dr + (op — ogg)fr = 0. McCLINTOCK'S
(1968) results from solving (48) for non-hardening Mises and Tresca materials are
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7 Vg 0"

fo V3 l¢] sinh (ﬂr ) — k¢ (Mises), (49)
79 2 T0 b

; _®

%0 2= 4| €] sgn (o4,%) exp (*a” l) — 4 ¢ (Tresca) (50)
0 T

{here sgn (... ) means ‘sign of’). We note that the growth rate in a Tresca material
is non-unique at o,y == 0, with any value between the limits — (le] + €)/2 and
- (| él — €)/2 constituting a valid solution for #y/ro.

Results for the spherical cavity in a Tresca material are somewhat difficult to
obtain, but we have performed the high triaxiality computation when the remote
field is a simple tensile extension at the rate ¢, as in Fig, 1. Again one assumes a
velocity field consisting of a term corresponding to the remote strain rate and a
term representing spherically symmetric void growth, just as in (28, 29) with
(2% €;;®)t replaced by ¢é. The dilatational growth factor D has the interpretation
as in (80) and it is obtained as the solution to (31). The following steps are involved
in computing deviatoric stresses corresponding to the assumed deformation field.
First, principal extension rates are found, as is possible in view of the axial sym-
metry, and it turns out that the assumed deformation ficld splits into two parts,
one having the intermediate rate éy > 0 and the other having ¢; << 0. The
boundary between these two regions is the sphere B3 = 2DRy3. 'The two regions
correspond to corners on the Tresea vield surface and in the former sp == sy ==
— sif2 = 270/3, whereas in the latter s = — 28y = — 28y = 47¢/3.  Once
principal stresses and directions are found, the tensor product in (31) is computed,
and with the substitutions A = (Ep/R)3 and & = cos ¢, there results

1 (27! )
20 4 (1 — 2£2) /A -
a®[Tg = f f [[1‘1)2 X2 L ADA(1 — 2£2) L 1]t ~ (1 —— 2¢ )/)\ d
" [V
2D (1 —28)/x
* ’ (D2 22 - 4DA (1 — 2€2) +1

(20D)-1

b 252)//\] Ay dé.  (51)

The large I result is now obtained through steps similar to those following from
(83). First one integrates over A and then performs a series expansion which drops
all terms vanishing when D is large, with the final result being

D = 2 5B exp (Bo®/47g) = 0-376 exp (Bo®/d7g) = 0-376 exp (8c%/2a0). (52)

Here, in the final form. we have employed the tensile yield stress o == 279. For
comparison, the large D result for a Mises matcerial with the same remote simple
extension strain rate ficld is

D = 3 e exp (/3 0®/279) = 0-283 exp (V/3 0%/27) == 0-283 exp (36%/20p), (53)

where the Mises tensile vield og == 4/3 79 is cmployed in the last form. Kxamining
(52, 53) together with (49, 50), we see that both idealizations (and perhaps all
isotropic idealizations) lead to the same coeflicients in the exponential terms when
materials are matched in tension for the case of a spherical cavity, and in shear for a
long cylindrical cavity. Apart from this, however, the coeflicient multiplying the
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exponential for expansion of a sphere in a Tresca material is one-third greater than
that for a Mises material.
So far, all of our examples have been for non-hardening materials. Anindication
of strain hardening effects for spherical voids is given by the extreme case of a
rigid-plastic material exhibiting a linear relation between stress and ‘true’ strain
in simple tension. Then for isotropic strain hardening with a Mises equivalent
stress definition, stress—strain relations are
. 1 . s =
€= 50, sy 7 where 7 = (si7 855/2)% (54)
Here G is a constant and the formula applies only if, at the current instant, + > 0
and 7 equals the greatest value achieved in previous stressing. Otherwise, the
material is rigid and é;; = 0. For small strains and proportional stress elevations,
this results in the incompressible linear elastic form e;; = $44/26G, with ¢; being
the infinitesimal strain tensor. Thus proportional stress elevations will result for
small deformations around the spherical void if the remotely applied stresses are
kept in constant ratio. The analogous linear elastic problem is readily solved for
general remote strain fields. One may verify that the deformations transform
initially spherical surfaces into infinitesimally neighbouring ellipsoids, as was
assumed for the shape changing fields employed in the non-hardening analysis with
a remote tensile field. In fact, the exact shape changing field in the present case is
given by F'1 (R) of (27), for a remote tensile field. The results for void growth rates
are most simply expressed in terms of remote principal extension rates é;%, é; ®, &1 .
Then if Ry, Ry, Ro denote radial velocities of the void boundary at points
aligned with the remote principal directions, the linear clastic analogy leads to

Rox — [g x® 4 (2 ép épo) \/;A?] Ro, K,L =T, 11, III, (55)
“HT

where 7% is the remote value of the equivalent flow stress in shear.

6. DIsScUSSION AND SUMMARY

Our results here for a spherical void, as well as McCrLintrock’s (1968) for the long
cylindrical void, show that growth rates are significantly clevated by the super-
position of hydrostatic tension on a remotely uniform plastic deformation field. In
both cases, moderate and high stress triaxiality leads to an amplification of relative
void growth rates over imposed strain rates by a factor depending exponentially
on the mean normal stress. In view of the complexity of detailed computations, a
simple approximate formula is developed below for the computation of void growth
rates in arbitrary remote fields.

A step has already been taken by (45), describing the dilatational contribution
to growth of a spherical void in a non-hardening material. We now turn to approxi-
mating the shape changing part. In (55) for the strongly hardening material, the
first term represents the shape change, and this involves a simple amplification of
the remote strain rate field by a factor of 5/8. Now, if we put (21) for a remote
tensile field into the same form, it is seen that the 5/3 factor is replaced by 1 + E,
While Fig. 2 for this shape change factor does not lead to a definitive result, it is
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seen that for D near zero (low triaxiality) all four ‘reasonable’ shape change fields
give values around 5/3 or slightly higher. Then, over a substantial range of D
(say, D greater than 2, corresponding to a triaxiality ratio c®/rg greater than 2-3
in Fig. 8) all predictions of 1 -+ E give a value in the neighbourhood of 2 as does the
solid average line. Deviations are significant at large values of I), but not very
important since D then overwhelms 1 + ¥ in value. Assuming these observations
to be appropriate also for other types of remote fields, we can now write a general
approximate equation for growth rates in the form of (55) as

Rog = {(5to2) ég® -+ (2 é,° é,°) D} Ry, K, L — I TL IIL (56)

Here D is given by (45) for a non-hardening material, and by the second term of
(55) for the strong linear hardening. It is evidently influenced greatly by hardening.
The shape changing part is not much influenced, with the 5/3 factor appropriate
for strong hardening or very low triaxiality in a non-hardening material, and the
2 factor appropriate at higher triaxiality in the latter case. Thus the clarification
of strain hardening effects on dilatational growth is an important area for further
study. McCriNtock (1968) has suggested a simple empirical correction to the long
cylinder results in terms of a hardening exponent. Also, TraceY (1968) reports
some results of detailed solutions for the same simple configuration in a companion
paper. Our variational procedure could be applied for the more realistic spherical
void model through a step by step procedure. In view of the relative insensitivity
of the shape changing field to hardening, a simplification would result by letting
the dilatational growth factor D) be the only free parameter in the assumed velocity
field, with an equation similar to (81) resulting at each step of the deformation.

To gain an appreciation for the numbers involved, consider contained non-
hardening plastic deformation near a crack in plane strain (Ricg, 1968). The mean
normal stress directly ahead is o -~ (1 -- 7)7g, and since the state of deformation
is pure shear, strain rates can be represented as % = ¢, éu™ = 0, ™ = — €
where ¢ is the maximum extensional strain rate. Computing /) from (45) and
taking the factor of 2 for the shape changing field, velocities in principal directions
on the void boundary are given by (56) as
Ry = 186 éRy, Ryn — 116 Ry, Rypyp — 96 €R,,. (57)
The significance of the numerical factors becomes clearer after integration, which
can be done so as to account for finite shape changes in an approximate way by
identifving R¢ as the mean of the three principal radii. We note that ¢is a ‘true’
strain, and if we let é = ¢xp (e) — 1 be the associated ‘engineering’ strain, the
results are

Ry 11 Ron 11-
Bl g aus o7, T (1 s,
(Ro)init. ( ) (RU)init. ( )
LT P (1 L s 4017,  (58)
(RU)iniL.

where (R, is the initial radius of the void. Thus, for a 10 per cent strain the
three size ratios are 83, 8-0, and 2-7, whereas for a 50 per cent strain the ratios are
129,110, and 91. These large numbers suggest that the 50 per cent dimension change,
so readily achieved in a tension test of a ductile metal, would be unachievable
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over any reasonable size scale ahead of a crack, and that even the 10 per cent
dimension change would be difficult to accommodate without large void spacings.
Strain hardening no doubt reduces these ratios significantly for the same stress
triaxiality, but the problem is further complicated by a very rapid increase of
stress triaxiality ahead of a crack with increasing values of the hardening exponent
(RiceE and RosSENGREN, 1968).

Apart from hardening, the interaction and unstable coalescence of neighbouring
voids are major features yet to be brought into the modeling of ductile fracture.
While the isolated void analysis predicts ample growth for fracture with high
stress triaxiality, quite the opposite is true in a simple tension stress field. Our
results then indicate no transverse expansion, and McCrLintock (1968) found that
actual tensile ductility, as recorded in extensive data on copper by EpELsox and
Barpwin (1962), was greatly overestimated by his long cylindrical void model even
when stress triaxiality in necking was included. TracEY’s (1968) study of the
same model did, however, lead to a substantial reduction in predicted ductility
with the approximate inclusion of interaction effects. We note that an analysis
based on continuum models of void growth will necessarily lead to a tensile test
ductility independent of the absolute void size or spacing, but dependent only on
the volume fraction, as observed by Edelson and Baldwin. The same will not be
true for fracture at a crack tip, or for other situations in which strain gradients
over typical void spacings are large, so that size effects are to be expected.
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