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PLANE STRAIN DEFORMATION NEAR A CRACK TIP 

IN A POWER-LAW HARDENING MATERIAL 
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Division of Engineering, Brown University, Providence, Rhode Island 

(ZZectiued 81st August 1967) 

CRACK-TIP strain singularities are investigated with the aid of an energy line integral exhibiting 
path independence for all contours surrounding a crack tip in a two-dimensional deformation 
field of an elastic material (or elastic/plastic material treated by a deformation theory). It is 
argued that the product of stress and strain exhibits a singularity varying inversely with distance 
from the tip in all materials. Corresponding near crack tip stress and strain fields are obtained for 
the plane straining of an incompressible elastic/plastic material hardening according to a power 
law. A noteworthy feature of the solution is the rapid rise of triaxial stress concentration above 
the flow stress with increasing values of the hardening exponent. Results are presented graphically 
for a range of hardening exponents, and the interpretation of the solution is aided by a discussion 
of analogous results in the better understood anti-plane strain case. 

1. INTRODUCTION 

ELASTIC/PLASTIC analyses of deformation fields near cracks are of obvious relevance 
to the mechanics of fracture. Little progress has been made on the important 
problems of tensile loadings opening a crack, although the anti-plane strain case 
is now well understood for both perfectly plastic (HULT and MCCLINTOCK 1956) 
and strain hardening (NEUBER 1961; RICE 1967a) materials, and some useful 
approximate models (DUGDALE 1960; RICE 1967b) have been proposed for tensile 
cases. A recent analytical technique developed by RICE (1967c) identifies a line 
integral which has the same value for all paths encircling the tip of a crack or flat 
surfaced notch in two dimensional deformation fields of linear or non-linear elastic 
materials. Appropriate choices of the integration path have led to approximate 
estimates of strain concentrations for a variety of notch problems; we here employ 
the method as a starting point in the analysis of near crack tip deformation fields 
in the plane straining of materials which harden according to a power law relation 
between stress and strain. 

Let c 

denote the energy density of an elastic material. Then considering a homogeneous 
body of this material containing a traction free crack and subjected to a two- 
dimensional deformation field (Fig. 1, all stresses depend only on a: and y), the line 
integral 
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FIG. 1. Coordinates for description of crack tip deformation field, and typical contour r for 
evaluation of path-independent line integral. 

J= S[ W (e) dy - T . g ds 
1 

r 

(1) 

has the same value for all paths r surrounding the tip. Here the path is traversed 
in the contra-clockwise sense, T is the traction vector on r defined according to 
the outward normal, Tg = ofj q, u is the displacement vector, and s is arc length. 
Path independence is readily demonstrated in a standard fashion by choosing 
two separate integration paths I’i and I’s. Since the integrand vanishes on the 
crack surfaces, JZ - JI is the above integral carried around the boundary of the 
area between ri and I’s, and a Green-Gauss type transformation of a line integral 
to an area integral immediately leads to Js - J1 = 0, proving path independence. 
As no success has been met in finding similar path-independent integrals for 
incremental elastic/plastic stress-strain relations, we are here forced to consider a 
deformation theory of plasticity which is in reality a non-linear elasticity. In 
particular, we consider an incompressible material with a relation between deviatoric 
stresses and strains of the Mises form 

27 
a5 = - et5 

Y 

where T = 2/(& stj ~$5) and y = d(2~~g ~(5) and with the hardening following a 
power law of the form 

T = Gy = TO y for y < 70 

YN 

0 

(3) 
7=70 - for Y 2 ~0. 

YO 

Here 70, ys are the yield stress and strain in shear, and N is the hardening exponent. 
As our concern will be only with the near crack tip strain singularity, incompressi- 
bility is not expected to be a poor approximation for moderate strain hardening as 
plastic strains are incompressible. Also, the resulting near tip solution involves 
proportional flow so that a deformation theory is less objectionable than is usually 
the case. 

The utility of the path independent integral lies largely in the fact that its 
value may be simply determined for a variety of cases and configurations (RICE 

1967c). For example, the integral has the same value as for the linear elastic 
solution to a given problem when the yield zone is small compared to geometric 
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dimensions of the problem. This is because such small-scale yielding solutions 
may be obtained through a boundary layer approach (RICE 1967a, b) in which 
actual boundary conditions are replaced by the requirement of an asymptotic 
approach to IRWIN’S (1960) characteristic linear-elastic inverse-square-root stress 
distribution at large distances from the tip. An extension of the integration path 
to infinity then requires that only the asymptotically approached field contributes, 
and the small-scale yielding value of J is 

J = (I - “2) K1s 
E * (4) 

Here RI is Irwin’s stress intensity factor, and for the wellknown problem of a 
crack of length 2a subjected to a uniform remote tension uaD 

J= 
7F (1 - “2) 02, a 

E ’ (5) 

Approximate evaluations of J for large-scale yielding are possible due to the relation 
of the line integral to the rate of variation of equilibrium potential energy of a 
crack body with respect to crack length. One such approximation is given and 
others are suggested by RICE (1967c). 

2. CRACK TIP SINGULARITIES 

Choosing a circular path of radius r for the evaluation of J, (1) becomes 

+lr 

J 
-= 
T Si W [e (r, B)] cos 6’ - T (r, 6’) . g h s)} de. 

--II 

03) 

Evidently the bracketed integrand { . . . } must exhibit a singularity at the crack 
tip which, at least in its angular average, depends inversely on distance from the 
tip. Since all terms within the integrand are of order stress times strain (assuming 
rotations to be of the same order as strains) one is tempted to conclude that crack 
problems in all materials result in a l/r singularity in the product of stress and 
strain : 

a function of 0 
=cj EZJ +- 

as r 3 o 
. 

r (7) 

While attempts at a rigorous proof of this assertion have not been successful, 
its validity in solved cases is noteworthy. The inverse-square-root linear-elastic 
stress singularities are in agreement, as is also an approximate analysis of perfectly 
plastic plane strain (RICE 1967c) where a l/r strain singularity results from the 
centred fan slip line field (HILL 1950) characteristic of analogous punch problems. 
Further, the validity of (7) may be verified in all elastic/plastic anti-plane strain 
crack solutions (RICE 1967a). 

For power law hardening materials, (7) implies near crack tip stress and strain 
distributions of the form 
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Conversely, we may turn our procedure around and prove the following. If stress 

and strain components have the singular structure of powers of r times functions 

of 0, then traction-free crack-surface boundary conditions (which lead directly to 

path independence) may be satisfied only if the powers of r are as in (8). This 

converse procedure is essentially a concise adaption of WILLIAMS’ (19%) eigen- 

function expansion to the non-linear case, but here we determine the eigenvalue 

(exponent of r) directly, and have left only the problem of determining the 

corresponding eigenfunction. 

To achieve this latter task, we introduce an Airy stress function U to satisfy 

equilibrium and give the correct dependence on T : 

u = (I + V2 

z+N 
T(2+iv)/u+N)f(e)_ 

Near crack tip stresses are then 

1 au 1 22 u 
arr=-_++- 

r br r2 382 

= (1 + N) r-N’(i+N) f(Q) + 

(9) 

1 (10) 

In a similar fashion, incompressibility and strain compatibility are satisfied by 

introducing a stream function 

$ = rU+2N)/(l+iV) g (Q), (11) 

resulting in displacements 

u L--12!= r 
r ae 

_ rN/U+N) g’ (e), 

lJ*3!=_ 
Jr 

ll ++“; rN/(l+N) g (0). 
(12) 1 

Near crack tip strains are 

N 
Gee = - +r = I + N 

+(l+iv)g'(Q), 

.+.o = - $r-l'(l+N) 
[ 
' + 2N g(e) +gv) (1 + N)2 1 1 

(W . 
The functions f (8), g (0) are not independent, but must be chosen to satisfy the 
one independent stress-strain relation of (2) and the hardening law (3), giving the 

following two equations. 
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fn +W +N) 
fl [ 

1 +2N 

(1 + NY g”+(l +N)Zg 1 =- 4N k?'f', (1 + NJ2 
fw+"(2+N) 

(1 + W2 f]2 +(I +" N)2j” (14) 

4702 (2 + N)2 w 
=-_. 

yo2N (1 + NJ4 4 (1 + W2 
- 

Solving for f (0) from these two equations gives, after some algebra, the following 
fourth-order differential equation for f : 

fiv+N(2+N)fn+ 
(1 + W2 h2 $Nf'2{(1 $N)2 [4Nf" + 'sh] lh2 +4f'2] 

+ ",;l+-NTf'[hh' + Y’S]+ &+NN) 

[3hP + 8h'f'f" +4h(f”2 +f'f'")] 
+ (1 -N)(l -3N) h 

N2(l +N) ’ I$ + 4j’2 
[hh’ + 4f ‘f q2} = 0 

where, for brevity’s sake, we have put 

h = (1 + N) f” + N;2++NN)f. 

(15) 

Note that the governing differential equation for f (8) has an equi-dimensional 
character, in the sense that if f (0) is a solution, then so is any constant times 
f (8). The unknown multiplicative constant is determined in terms of the value 
J of the path-independent integral by inserting our solution into (6). The equation is 
solved over the interval 0, w subject to boundary conditions which ensure a solution 
corresponding to symmetric deformations relative to the crack line. Note that 
f (0) may be chosen arbitrarily, say as 

f(O) = 1, (17) 

with the solution subject to a later normalization. Symmetry requires that 
0~0, dar,./3Q, and 3as&M? all vanish on B = 0, leading to two further conditions 

f’(0) =f’“(O) =o. (18) 

Finally, traction-free crack surfaces require age and u,.e to vanish at 0 = V, so that 

f(n)=f’(?T)=O. (19) 

Five boundary conditions appear at fist sight to overspecify the fourth order 
equation for f (Q). Actually, they do not, for the two conditions at 8 = 7~ imply 
one another. This is because the assumed forms of dependence on T in (9) and (11) 

necessarily result in path independence for the integral J and, recalling the proof 
of path independence sketched out in the introduction, this means that 

T (T, n) . g (r, m) = - age (T, T) sue;; p, +ure(r,7r)aUrpL0 c3-3) 

for all solutions of the equation for f (0). Thus the vanishing of a,.~ on the crack 
surface implies the vanishing of 060. 
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3. NUMERICAL COMPUTATIONS AND GRAPHICAL RESULTS 

For the numerical solution of the differential equation (15) forf, a fourth-order 
Runge-Kutta integration was used. Since this method can only be used for initial 
value problems, and ours is a two-point problem, as seen from the boundary con- 
ditions (17), (18) and (19), starting values off” (0) had to be guessed until two 
values off” (0) were found, one giving f(~) < 0 and the other giving f(r) > 0, 
and a linear interpolation procedure could be used. After some trial runs a step 
size equal to 0.9’ was found to be a good choice and for all values of N, except for 
N > 0.9, rapid convergence was obtained. For N > O-9 the solutions were very 
sensitive to changes inf” (0), reflecting the breakdown of (15) for N = 1, in which 
case one obtains expressions of the form O/O. Consequently, instead of using the 
interpolation procedure where N > 0.9, the appropriate interval for f” (0) in 
these cases was run through by using small increments in f” (0) and the right 
solution was chosen by inspection of the results. 

Because of the complicated form of the differential equation forf (e), no attempts 
have been made to make any error estimates of the numerical calculations. How- 
ever, since all results for N = 1, in which case the analytic solution is easily obtained, 
are very close to the results for N = 0.99, as can be seen from the figures, it is 
believed that the numerical results can be accepted with great confidence. 

In determining the correct multiplicative constant for f (O), i.e. performing the 
integration of (6), a g-point formula was used. 

All computations were performed on an IBM-360 and the average computing 
time for a run was 3.5 min. 

The power hardening law (3) has been drawn for some different values of the 
hardening exponent N (Fig. 2). 

T/TO= y/y0 FOR y < y. 

0.5 ~/To=(~/~o)NFOR y > y. 

Fro. 2. Power hardening law. 

From the expressions for the Mises equivalent shear stress T and shear strain 
y one finds 

7. = TO [R (B)/r]Nl(l+N), y = y,, [R (~‘)/T]~“+N (21) 
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where R (0) is an expression containing f (0) and its derivatives, or, when using 
the normalized form off(Q), R = R (8; J, N). 

From (21) one immediately sees that R (0) gives the shape of constant equivalent 
strain lines very near the crack tip and that R (6) can be interpreted as an approxi- 
mate indication of the distance from the crack tip to the elastic/plastic boundary 
(approximate since our solution gives the singular term only, and not of necessity 
the complete solution in the plastic region). Figures 3 and 4 show the nondimensional 
distance ys 70 R (0)/J for different values of N; the latter figure amplifies detail 
near the crack tip through a twenty-five times larger scale. In these figures the 
extreme closeness between the results for N = 1 and 0.99 is readily seen. 

FIG. 3. Approximate location of elastic/plastic boundary and geometrical shape of constant 
equivalent shear lines very near the crack tip. 

@ N = 0.005 @ N= 0.2 

0 0.01 @ 0.3 
0 0.05 g 0.5 

co 0. I 1,0.99 

FIG. 4. Elastic/plastic boundary; detail very near tip. 

In Figure 5 it is demonstrated how the elastic/plastic boundary in front of and 
behind the crack tip strongly depends on the hardening exponent. In this figure 
is also shown how the maximum distance from the crack tip to the elastic/plastic 
boundary, ys TO R-=/J, varies with N. 



J. R. R.ICE and G. F. ROSEN~REN 

I 

0.3 

0 0.5 I.” 

Fxo. 6. Distance from crack tip to approximate elastic/plastic boundary in f’ront of and 

behind the crack, as well as maximum distance from crack tip to boundary. 
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FIG. 6. Variation of P/T = (age + CT,,)/(%) with 8. 
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Using the expressions for the stresses one easily finds that the mean stress, 
p = (age + ~,~)/2 divided by 7 is a function of 0 only. Figure 6 shows this 
B-variation of p/r together with the mean stress distribution in the perfectly 
plastic case, N = 0. The latter distribution is easily obtained from the condition 
of two regions of constant stress state, one in front and one behind the crack tip, 
with the regions being built up of isosceles right triangles thus forcing any slip 
line leaving the crack surface and ending up at the symmetry line in front of the 
crack tip to swing through an angle of 4, giving P/T = 1 + TI at 8 = 0 (HILL 

1950; RICE 1967c). In this figure again is demonstrated the closeness of the results 
for N = 1 and 0.99 as well as of the results for N = 0.005 and N = 0. 

,I 1 I I I I I I *N 

0 0.2 0.4 0.6 

Bm. 7. Maximum normal stress to equivalent stress for 0 = 0, o42~)/e=o, vs. N. 

Figure 7 shows how the ratio of the maximum normal stress to the equivalent 
stress along the symmetry line ahead of the crack, ag,s/271,3,c, varies with the 
hardening exponent. The rapid rise over the (1 + 4~) value anticipated from 
perfect plasticity is notable and of interest when, for instance, discussing fracture. 

For the displacements one finds, when using the normalized f (B), that u,. TO/J 

Y,T,,R(TlJ 1 I I I 

e I 1 I 1 I J 

0 006 0.006 0.004 0.002 0 

FIG. 8. Shape of deformed crack surfaces in the plastic region. An arrow in the figure indicates 
the displacements at the elastic/plastic boundary behind the crack tip as well as the direction 
of the displacements at the crack in the plastic region. The scale at bottom of figure shows the 
nondimensional distance from the crack tip to the ehxstic/plastic boundary behind the crack. 
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and ue TO/J can be expressed as a product of (r/R)N’(l+N) and functions of 8. 
These normalized displacements were calculated and in Fig. 8 the shape of the 
deformed crack surfaces in the plastic region are shown for some values of N. 
An arrow in the figure indicates the displacements at the elastic/plastic boundary 
behind the crack tip as well as the direction of the displacements at the crack in the 
plastic region. At the bottom of the figure is also a scale showing the nondimensional 
distance from the crack tip to the elastic-plastic boundary behind the crack tip, 

YO 70 R (d/J. A s seen from the results in Fig. 8, the crack opening is very in- 
sensible to the value of the hardening exponent and for N < 0.2 the crack opening 
St can be taken to be 

6t w o&3 J/T,,. (22) 

From Fig. 8 one sees also how the blunting of the crack tip varies with N. However, 
since our numerical results do not give a clear indication as to whether the distance 
from the crack tip to the elastic/plastic boundary behind the crack is zero or not 
when N = 0 (see Fig. 5), it is not possible to say anything definite about the de- 
formed shape of the crack surface in that case. A displacement discontinuity 
results at the tip according to the slip line analysis of RICE (1967c). 

Finally, Fig. 9 shows how the maximum shear direction varies around the crack 
for different N. The straight line segment limit results from the slip line construc- 
tion noted earlier for the perfectly plastic case N = O. In the elastic case N = 1, 
there is a hydrostatic stress state in front of the crack thus leaving the maximum 

aa 
,wN = 0.0.005 140 

120 

100 

80 

60 

40 

20 

I I I I I 1 I , I 

8” 180 140 100 60 20 0 

FIG. 9. 
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shear directions indeterminate for f3 = 0. For all other values of N the maximum 
shear directions in front of the crack are in the 450-directions relative to the sym- 
metry line, and the figure nicely demonstrates the transition of the distribution of 
the maximum shear direction between the two limiting cases, N = 0 and N = 1. 

4. DISCUSSION 

We emphasize that our solution gives only the structure of the crack tip singu- 
larity. Thus, for example, predictions of the elastic/plastic boundary location are 
approximate. Since the anti-plane strain crack problem (RICE 1967a) is well 
understood, some insight into the proper interpretation of our solution might be 
obtained through an examination of that case. Anti-plane stress and strain singu- 
larities in the form of (8) can be found and, indeed, the complete solution does 
reveal a deformation field dominated by such a singularity near the crack tip. 
It turns out that for small-scale yielding (the boundary layer approach noted in 
the introduction), the singular forms of (8) give the complete solution in the plastic 
region. Elastic fields can be found which continue the solution across the elastic/ 
plastic boundary predicted by the singular terms, and which meet the asymptotic 
boundary conditions. This is a remarkable fact, but it is uncertain (and doubted) 
that a similar role would be played for small-scale yielding by the singularities in 
plane strain. 

For anti-plane yielding on a scale comparable to crack length, the elastic/plastic 
boundary begins to differ significantly from that predicted by the singular term 
alone. Also, while mathematically the singularity dominates in the limit as r + 0, 
one finds for small N that strain magnitudes become excessively large at distances 
from the tip small before the singular term dominates the complete solution. 
The limit of such behaviour results for perfect plasticity (N = 0). Then, while 
the strain field exhibits a l/r singularity, the distribution in 8 changes with remote 
stress level in the large scale yielding range. No unique singular strain distribution 
exists. A similar feature undoubtedly results for plane strain; the singular term 
solution appears (from our figures) to have a unique limit as N --f 0 but, in fact, 
our equations do not have a unique solution for the stream function (11) when 
N = 0. Nevertheless, the l/r strain singularity would appear necessitated and our 
solution gives the correct average (in the sense of the J integral) B dependence of the 
strength of this singularity. 

The very rapid rise of stress triaxiality with strain hardening exponent (Fig. 6) 
over the practical range for structural metals, say N = 0.05 to 0.3, shows that 
hardening can elevate stresses not only by increasing the flow stress with increasing 
strain but also by modifying the stress state. Thus, for example, a low yield- 
strength metal may develop local peak stresses in front of a crack comparable 
to or in excess of those for a higher strength metal, simply because lower-strength 
materials tend to exhibit greater hardening exponents. The presence of large 
tensile stresses ahead of a crack is clearly important for the nucleation of micro- 
cracks in materials capable of cleavage; they are also important for the promotion 
of ductile fracture mechanisms involving the large growth and final coalescence of 
voids. Although the latter mechanism may appear strain controlled, perfectly 
plastic calculations for simple configurations (MCCLINTOCK and ARGON 1966) 
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show a nearly exponential dependence of the rate of void growth per unit of overall 
strain on the ratio of mean normal stress to yield stress. The role of strain hardening 
in slowing void growth and raising strains required for coalescence cannot presently 
be assessed, so that a direct step from this analysis to a crack extension criterion 
will require further work. Finite geometry changes at the crack tip also influence 
the deformation state in separation prone material. For example, analyses in the 
perfectly plastic case do not lead to large strains directly ahead of the crack unless 
progressive blunting of the tip is considered (RICE 1967c). Another complicating 

feature is the distinction that must be made between strain increments due to load 

elevation and strain increments due to crack advance in incremental elastic/plastic 

materials (MCCLINTOCK and IRWIN 1965). Ductile metals exhibit at least a limited 
amount of stable crack extension prior to catastrophic fracture. The pertinent 
question in fracture mechanics is more one as to the prediction of final instability 
than to the prediction of the initiation of crack extension. While the adequate 
modelling of fracture remains remote, our present solution should be useful for 
the further understanding of the effects of yielding and hardening, providing other 
pertinent features of the problem are kept in mind. 

We have learned by private communication that Professor J. W. Hutchinson 
is conducting similar work on the structure of crack tip singularities, both in plane 
strain and plane stress, basing his approach on a direct computer-assisted adaption 
of the Williams eigenvalue technique to the non-linear case. He too finds a l/r 

variation of stress times strain for both deformation modes. Also, Professor J. L. 
Swedlow reports that a further analysis of experimentally determined plane-stress 
crack-tip deformation fields, with data obtained by GERBERICH (1964), tends to 

support a l/r dependence for the product of stress and strain near a crack tip. 
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