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Abstract

An integral is exhibited which has the same value for all paths surrounding

a class of notches in two-dimensional deformation fields of linear or non-linear

elastic materials. The integral may be evaluated almost by inspection for a few

notch configurations. Also, for materials of the elastic-plastic type (treated

through a deformation rather than incremental formulation), with a linear re-

sponse to small stresses followed by non-linear yielding, the integral may be

evaluated in terms of Irwin's stress intensity factor when yielding occurs on a

scale small in comparison to notch size. On the other hand, the integral may be

expressed in terms of the concentrated deformation field in the vicinity of the

notch tip. This implies that some information on strain concentrations is

obtainable without recorse to detailed non-linear analyses. Such an approach is

exploited here. Applications are made to: 1) Approximate estimates of strain

concentrations at smooth ended notch tips in elastic and elastic-plastic materials,

2) A general solution for crack tip separation in the Barenblatt-Dugdale crack

model, leading to a proof of the identity of the Griffith theory and Barenblatt

cohesive theory for elastic brittle fracture and to the inclusion of strain

hardening behavior in the Dugdale model for plane stress yielding, and 3) An

approximate perfectly plastic plane strain analysis, based on the slip line

theory, of contained plastic deformation at a crack tip and of crack blunting.
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Introduction

Consider a homogeneous body of linear or non-linear elastic material

free of body forces and subjected to a two dimensional deformation field

(plane strain, generalized plane stress, anti-plane strain) so that all

stresses aij depend only on two cartesian coordinates x, (= x) and

x2 (= y) . Suppose the body contains a notch of the type shown in fig. 1,

having flat surfaces parallel to the x axis and a rounded tip denoted by the

arc rt . A straight crack is a limiting case. Define the strain energy

density W by

W = W(Xy) =W() adijd.i* , (1)

where c [.ij] is the infinitesimal strain tensor. Now consider the

integral J defined by

J = (Wdy -T• ds) (2fr ax

Here r is a curve surrounding the notch tip, the integral being evaluated

in a contraclockwise sense starting from the lower flat notch surface and

continuing along the path r to the upper flat surface. T is the traction

vector defined according to the outward normal along r , T. = a..n. , u

is the displacement vector, and ds is an element of arc length along r

We now prove that the integral J has the same value for all paths r
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This path independence, combined with the fact that J can often be directly

evaluated, is the key to a variety of subsequent applications to non-linear

strain concentration problems. To prove path independence, consider any

closed curve r enclosing an area A in a two-dimensional deformation

field free of body forces. An application of Green's Theorem [1] in cartesian

coordinates x1 = x , x2 = y gives

au. au.
(Wdy - T I ds) = ( dxdy (3a)

1 i ax -- a dx d

Differentiating the strain energy density,

3E.. ae..
= aEW j = ..ij ax13  (by eq. 1)

1 E a u.a au. a au
- a (ijC" (•.) ax = j a. . (--a-) (since a. .ji)

ax x(x. a. ax1 i3 1 3

au. aa..a. , 1) (since . 0) (3b)
ax- .~- a x..-- ax.3 3

The area integral in eq. (3a) vanishes identically, and thus

I au
(Wdy - T W ds) = 0 for any closed curve r . (3c)r• * ax

Path independence of the integral J defined by eq. (2) is now a straight-

forward consequence. Consider any two paths r1 and r 2 surrounding the
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notch tip, as does r in fig. 1. Traverse r1 in the contraclockwise

sense, continue along the upper flat notch surface to where r2 intersects

the notch, traverse r2 in the clockwise sense, and then continue along the

lower flat notch surface to the starting point where r1 intersects the notch.

This describes a closed contour so that the integral of Wdy - T • (3u/ax) ds

vanishes. But T = 0 and dy = 0 on the portions of path along the flat notch

surfaces. Thus the integral along r1 contraclockwise and the integral along

r2 clockwise sum to zero. J has the same value when computed by integrating

along either r1 or r2 , and path independence is proven. We assume, of

course, that the area between curves r1 and r2 is free of singularities.

Our scheme of approach to notch strain concentrations is first to point

out in the next section that J can be explicitly evaluated for a variety of

configurations and cases. The relation of the integral J to the rate of

change of potential energy with respect to notch length will also be noted.

Then, in subsequent sections, by appropriate choices of the curve r on which

J is evaluated, a variety of notch deformation concentration problems will be

discussed.

Evaluations of the Integral J

Two special configurations. The integral J may be evaluated almost

by inspection for the two special configurations shown in fig. 2. These

configurations are not of great practical interest, but are useful in illust-

rating the relation between the integral J and potential energy variation

rates which is taken up below. In fig. 2a, a semi-infinite flat surfaced
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notch in an infinite strip of height h , loads are applied by clamping the

upper and lower surfaces of the strip so that the displacement vector U

is constant on each clamped boundary. Take r to be the dashed curve shown

which stretches out to x = I - . There is no contribution to J from the

portion of r along the clamped boundaries since dy = 0 and Wa/ax = 0

there. Also at x - - , W = 0 and Wa/ax = 0 . The entire contribution

to J comes from the portion of r at x + - , and since au/ax = 0 there,

J = W. h (4)

where W is the constant strain energy density at x = + .

Now consider the similar configuration of fig. 2b, with loads applied

by couples M per unit thickness on the beam like arms so a state of pure

bending (all in-plane stresses vanishing except a xx) results at x = - - .

For the contour r shown by the dashed line, no contribution to J occurs

at x = + - as W and T vanish there, and no contribution occurs for por-

tions of r along the upper and lower surfaces of the strip as dy and T

vanish. Thus J is given by the integral across the beam arms at x = -

and on this portion of r , dy -ds , = 0 , and T xx Weend
Y x x

up integrating

au- W -W = W.. £.. -W
xx ax xx xx 13 1)

S e..da.. & (5a)
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across the two beam arms, where ý2 is the complimentary energy density.

Thus, letting 9 b(M) be the complimentary energy per unit length of beam

arm per unit thickness for a state of pure bending under moment per unit

thickness M ,

J = 2ab(M) . (5b)

Our motives will be clear enough if we now employ path independence to

shrink the curve r down to the curved notch tip, denoted by rt in fig. 1.

Since the traction vector T vanishes on the notch surface

J = ft wdy . (6)

Without solving generally non-linear and unmanageably difficult boundary value

problems, we have extracted a very significant bit of information on the con-

centrated deformation field at the notch tip. Recognizing W as a function

of the surface strain along the tip, we obtain an averaged value of the con-

centrated strain by simply being able to estimate the strain energy in a homo-

geneous deformation field, eq. (4), or to solve the problem of pure bending of

a beam, eq. (5b). Such simple connections are the essence of the method pre-

sented, but we defer the details to subsequent sections and take up next the

estimate of J for small zones of notch tip yielding in materials of the

elastic-plastic type.
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Small scale yielding of elastic-plastic materials. The proof of path

independence applies only to elastic materials for which a strain energy

density exists. Thus we are here forced to consider deformation theories of

plasticity (non-linear elasticity) rather than the physically more appropriate

incremental theories. This should not be a great drawback [2,3] for problems

of monotonic loading. Specifically, we shall here understand the phrase

"elastic-plastic material" to mean an elastic material exhibiting a linear

Hookian response to stresses inside some initial yield surface in stress space,

and a non-linear (strain hardening) response to stresses outside the initial

yield surface. We consider a narrow crack-like notch and derive a formula for

the integral J when the yielded zone is confined to a small region near the

notch tip that is negligible in size in comparison to geometric dimensions such

as notch length, unnotched specimen width, etc.

The situation envisioned has been termed "small scale yielding" [2,4,5],

and we employ a special boundary layer type formulation of the problem dev-

eloped in work by the author [2,5] and others [6,7], and described most fully

in a recent survey [8] on crack plasticity. The essential ideas are illustrated

in reference to fig. 3. Loadings symmetrical about the narrow notch are

imagined to induce a deformation state of plane strain. First, consider the

linear elastic solution of the problem when the notch is presumed to be a

sharp crack. Employing polar coordinates r,8 with origin at the crack tip,

the form of stresses in the vicinity of the tip are known [9-11] to exhibit

a characteristic inverse square root dependence on r :

KI

a.. (2 11/2 f j(8) + other terms which are bounded

at the crack tip. (7a)



-8-

Here the set of functions f ij.() are the same for all symmetrically loaded

crack problems, and for the isotropic material [9,10,12]

f xx(e) = cos (8/2) [1 - sin (0/2) sin (38/2)]

f (e) = cos (e/2) El + sin (e/2) sin (38/2)] (7b)yy

f xy() = f X(e) = sin (8/2) cos (0/2) cos (38/2)

KI is Irwin's stress intensity factor [10,12], a function of geometry and

applied load, depending linearly on the latter, that has been tabulated [12] for

a wide variety of crack configurations on the basis of extensive recent elastic

crack solutions generated in studies on fracture mechanics. Now suppose the

material is elastic-plastic, the flat surfaced notch is either a sharp crack

or a narrow void, and the load level is sufficiently small so that a yield zone

forms near the tip which is small compared to notch length and similar character-

istic dimensions (small scale yielding, fig. 3a). One anticipates that the

elastic singularity governs stresses at distances from the notch root that are

large compared to yield zone and root radius dimensions but still small com-

pared to characteristic geometric dimensions such as notch length. The actual

configuration of fig. 3a is then replaced by the simpler semi-infinite notch

in an infinite body (fig. 3b), and a boundary layer approach is employed re-

placing actual boundary conditions in fig. 3a with the asymptotic boundary con-

ditions

K1

a 11 f..(e) as r ÷ , (7c)
iJ (21r)l/ 2 1



where K is the stress intensity factor from the linear elastic crack

solution.

Such boundary layer solutions for cracks are mathematically exact in

the plastic region only to the first nonvanishing term of a Taylor expansion

of complete solutions in the applied load [2,4,5]. But comparison [8] with

available complete solutions indicates the boundary layer approach to be a

highly accurate approximation up to substantial fractions (typically, one-

half) of net section yielding load levels. We now evaluate the integral J

(eq. 2) from the boundary layer solution, taking r to be a large circle of

radius r in fig. 3b :

J = r [W(r,e) cos e - T (r,e) • (rO)] de (8a)

By path independence we may let r - and since W is quadratic in strain

in the elastic region, only the asymptotically approached inverse square root

elastic stress field (eq. 7c) contributes. Working out the associated plane

strain deformation field, one finds

2_ 1 -v 2 (b
I K2 for small scale yielding (8b)

where E is Young's modulus and v Poisson's ratio. We have thus evaluated

J for an infinite variety of problems, and made an unexpected use of linear

elastic crack solutions in elastic-plastic problems.
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Primarily, we will later deal with one configuration, the notch of

length 2a in a remotely uniform stress field a., (fig. 4). Here [10]

KI a (a1/2 anW (i - V2) 2

I (a)E and J E aa for small scale

yielding (9)

2

For plane stress, the same result holds for J with 1 - v replaced by

unity. Thus far only loadings symmetrical about the narrow notch line have

been considered (the opening mode in Irwin's terminology [10]). The same

computation may be carried out for more general loadings. Letting KI ,

KII , and KIII be elastic stress intensity factors [10] for the opening,

in-plane sliding, and anti-plane sliding modes, respectively, of notch tip

deformation one readily obtains

V (K 2 + K + (small scaleE I II E III

yielding) (10)

A physical interpretation in terms of energy comparisons for notches

of neighboring size. In view of the path independence it should come as little

surprise that a simple physical interpretation can be attached to J . Con-

sider the two dimensional deformation of a body with cross section A' and

bounding curve r' . Letting F" be that portion of r' on which non-

vanishing tractions T are prescribed, we define the potential energy per

unit thickness by

WAdxdy - f r"T . uds



-11-

Suppose the body contains a flat surfaced notch, as in fig. 1, with a tip

at x = I and denote the potential energy by P(N) . We compare this with

the potential energy P(£ + A£) of a body identical in every respect (same

shape and same distribution of prescribed displacements and/or tractions on

the boundary), except that the notch is longer with the tip now at a neigh-

boring position x = £ + A£ . The shape of the curved notch tip rt is

imagined the same in both cases. Then one may show that the integral J

defined by eq. (2) is

- lim P(£ + AO) - P() P (12)

the rate of decrease of potential energy with respect to notch length under

fixed prescribed boundary values. The proof is fairly long, and is deferred

to a subsequent report both in the interests of brevity and because a direct

focus on energy variations is a subject in itself allowing a variety of fur-

ther results on non-linear strain concentrations at notches. For the present,

we simply note below that J does indeed equal the potential energy decrease

rate for the cases evaluated above.

When loading is entirely by prescribing boundary displacements as in

fig. 2a, the potential energy equals the strain energy and we check from

eq. (4) that J is indeed equal to the rate of decrease of strain energy

with respect to notch length. When loading is entirely by prescribing boundary

tractions as in fig. 2b, a simple application of virtual work in eq. (11)

shows that the potential energy equals minus the complimentary energy, and

eq. (5b) checks J to be the rate of increase of complimentary energy with

respect to notch length. Readers familiar with elastic fracture mechanics
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will recognize eqs. (8b-l0) as giving results for J which are identical

to the potential energy decrease rate calculated in general form by Irwin

[10) in terms of his stress intensity factors for linear elastic crack pro-

blems. When deviations from linearity occur over a region negligible in com-

parison to characteristic dimensions of a problem (small scale yielding), it

is clear that the energy decrease rate should be insensitive to the yielding

and thus still given by the linear elastic expressions so that we again check

eq. (12). The physical interpretation of J in terms of a variation rate in

potential energy is useful in enabling an approximate treatment of notch strain

concentrations when yielding is not confined to a small region near the tip.

For example, suppose we can solve a simplified elastic-plastic model for

yielding near a notch. Even though the solution may be very wrong in detail,

we might confidently expect the model to accurately predict a gross feature

of the solution such as the rate of variation of potential energy with respect

to notch length. Thus we compute J from the simplified model, and then

ignore the model and go on to employ techniques of the next sections to

analyze strain concentrations at the notch tip. Examples are discussed

subsequently.

Strain Concentrations at Smooth Ended Notches

When we shrink the contour r down to the curved tip rt of a smooth

ended notch, as in deriving eq. (6), there results

J = Wdy = W(O) rt(0) cos 0 do . (13)
frt .-1/
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Here * is the angle between the tangent line at a point on the curved

tip and the y axis (fig. 5) and rt(c() is the radius of curvature at

that point. Viewing J as a known function of the applied load, we obtain

an approximate estimate of the maximum concentrated strain by choosing some

reasonable dependence of the strain energy on 0 . Some guidance on what

constitutes a reasonable choice is given by a perusal of known solutions

for notches.

A well known [13] feature of the linear elastic problem of an ellip-

soidal inclusion imbedded in a matrix of another material, subjected to

a uniform remote stress state, is that the inclusion undergoes a homogeneous

deformation. Strains in the inclusion are independent of position. The ellip-

soidal void is a limiting case with an inclusion of zero elastic modulus, sur-

face strains being compatible with a homogeneous deformation of the imagined

zero-modulus inclusion. Now consider the special case of a narrow ellip-

tical void symmetrically loaded under plane strain conditions. Let cmax

be the maximum extensional strain, occurring at the notch tip on the semi-

major axis. Then the imagined inclusion undergoes a homogeneous strain

C = C and c =£. , where c . is the surface extensional strainyy ma mnmmn

on the semi-minor axis. The latter is negligible in comparison to Cmax for

a narrow ellipse and essentially the inclusion undergoes a single homogeneous

strain emax in the y direction. Matching surface extensional strain c

with extensional strain in the imagined zero modulus inclusion in a direction

tangent to the void boundary,

C = £max cos 2 when Emin is negligible ,(4a)
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where 0 is the tangent angle introduced in fig. 5.

As an approximation for our flat surfaced notch problems, we may con-

sider the deformation of the notch surface near the tip to be describable

by the homogeneous straining of an imagined zero modulus inclusion. Thus

the maximum concentrated strain is estimated from eqs. (13,14a) by setting

S~2

J Z J-w/2 We max cos 2) rt(0) cos 0 d . (14b)

Here W(i) is the strain energy accompanying an extensional strain £ on

the notch surface. One might instead presume that the distribution of strain

energy with * in the linear elastic ellipse problem,

4W W(e max) cos when min is negligible , (15a)

is more likely to be a better approximation for our flat surfaced notch pro-

blems. In this case the maximum strain is estimated from

) +C/2

Certainly, neither assumption is exact and there is no way (without

recourse to the detailed solutions we are trying to avoid) to decide which

gives the best answer. As we shall see, resulting answers for maximum strain

are somewhat sensitive to our choice. An examination of some results from

known anti-plane strain solutions does, however, suggest that eq. (14b) be
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employed. If we consider the elliptical void subjected to symmetrical anti-

plane strain loadings, the imagined zero modulus inclusion undergoes the homo-

geneous strain Eyz = Ymax/2 where ymax is the maximum concentrated "engin-

eering" shear strain occurring at the notch tip. Matching shear strains y

on the notch surface with shears in the inclusion

Y = Ymax cos 0 . (16a)

It happens that a solution for a crack in a uniform remotely applied

anti-plane stress field has been given [2,6] for elastic-plastic materials

with arbitrary non-decreasing relations between stress and strain in the plastic

range. Neuber [6] first pointed out that such crack solutions also give sol-

utions for a family of smooth ended notches since stress trajectories in the

crack solution may be thought of as traction free notch surfaces. Methods of

locating such notch boundaries are discussed in [8]. If we take the small

scale yielding solution [2] in which the crack is viewed as semi-infinite and

generate the family of smooth ended semi-infinite notches by methods of [8],

the surprising result turns out that eq. (16a) is satisfied on the notch sur-

face regardless of the relation between stress and strain in the plastic range.

Recalling that small scale yielding solutions give details correctly only near

the notch tip, the assumption of a homogeneously deformed zero modulus inclusion

accurately describes deformations of the notch tip at least at low load levels.

The shape of notch surfaces generated by stress trajectories of the crack sol-

ution do depend on the stress-strain relation. Parabolas result for linear

elastic behavior. Perfectly plastic behavior leads to a semi-circular notch
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tip [8] where the stress trajectories pass through the crack plastic zone,

and relatively flat notch surfaces where the trajectories pass through

elastic material. This is especially encouraging as our formulation is for

flat surfaced notches and our main interest is with ductile materials.

Neuber [6] pointed out for this class of anti-plane strain problems

that the product of stress and strain concentration factors is independent

of the stress-strain relation. A more careful examination of mathematical

results [8] indicated the Neuber result to be valid only for small scale

yielding of elastic-plastic materials, and only for the comparison of stress

and strain concentrations at notch tips whose geometry does depend on the

stress-strain relations. Thus the Neuber result is only approximately

correct. Rather, our present considerations of path independent integrals

and their relation to potential energy variations appear to be the embracing

principles which lead to Neuber's result in special cases. If we approximate

notch tip deformations by eq. (16a) in anti-plane strain problems, the maxi-

mum concentrated strain is estimated from

+ir/2
J = f-•12 W(Ymax cos 0) rt () cos 0 do , (16b)

where W(y) is the strain energy accompanying an anti-plane strain y of

the notch surface. Strict equality holds for notch surfaces generated by

stress trajectories of the small scale yielding crack solution, with J set

equal to its linear elastic value (last term of eq. 10).
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Having received some encouragement from the anti-plane strain case,

we now proceed to use eq. (14b) (homogeneous deformation of void interior

in the neighborhood of the notch tip) to estimate concentrated deformations

in the plane straining of a flat surfaced notch with a semi-circular tip

(rt(0) = rt = a constant). We shall always first give results in terms of

J and then, to put equations in more familiar terms, give results for the

special value of J in eq. (9) for small scale yielding near the narrow

notch of length 2a in a uniform remote stress field % (fig. 4). The

reader should recall, however, that J is known either approximately or

exactly for a large number of other cases and configurations.

For linear elastic behavior stress-strain relations and strain energy

density on the notch surface under plane strain conditions are

E E___2_

a 1 , W(C) = 2 (17a)
1-V 2(l - v)

Inserting in eq. (14b) and solving for the maximum concentrated strain,

15lF 2 )J 1/2 (1 - V2 )c* a1/2
5(1 - vB ) J = 2.43 --- E (Tt) . (17b)

The numerical factor of 2.43 appears appropriate for a flat surfaced notch

when one recalls the factor 2.00 for the narrow elliptical hole [14] of the

same root radius. The ellipse represents a much less abrupt transmission of

load around the notch tip (the ratio of semi-minor axis length to root radius
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approaches infinity as the ellipse is narrowed toward zero thickness).

For perfectly plastic behavior, let a y be the yield stress at points

along the notch surface under plane strain conditions. With elastic com-

pressibility a limiting yield stress in plane strain is really approached

asymptotically when plastic strains become large compared to elastic strains

[15], but we shall consider a simple picture of linear behavior up to a y and

constant stress thereafter. Then

a = ay ,W(C) = ay (C - Cy + • yy ,for C > Cy (1a

and eq. (17a) applies for c < cy ,where

(i - V 2) a y
Cy = E (18b)

is the yield strain given by Hooke's law under plane strain conditions. One

then obtains from eq. (14b), when the yield strain is exceeded,

( max)2 CY 1/ max 1) 5215 J _15 7r(a)O a__ .

C Y C max CY8

(180)

This equation, along with the linear elastic result, is plotted as the solid

curve in fig. 6. The ratio of maximum concentrated strain to yield strain is

shown as a function of the square root of the terms on the right in eq. (18c),
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since this dimensionless representation of the applied load has the value

unity at initial yield and, at least at low load levels when J is given by

the linear elastic expression of eqs. (8,9), is linear in the applied load.

The left side of the above equation may be developed in a series, and if we

neglect all terms which vanish when cmax/£ Y >> » ,

2
3 J a(1)
3 T C -- ) = .075 c + 2.36 (-) )(18d)

max a Y aYrt Y rYt

This equation gives a result for the maximum concentrated strain which is 15%

too large at the initial yield load; the discrepancy with eq. (18c) becomes

imperceptible at loads greater than three times the initial yield load.

Strain hardening poses no special difficulty with our present method.

For simplicity of resulting formulae, we shall limit attention to cases where

concentrated strains are very large compared to the initial yield strain. Thus,

for linear work hardening in the relation between stress and strain on the notch

surface,

E
a = ay + w 2 (C - C , C > Ey (19a)

1 -

eq. (14b) leads to

5 E [ E J 1/2
max Ew C E a r

1/
SE 5E a r] l/6, Ew 1- 1- (19b)
w
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Here Ew is the tangent modulus (effectively) and terms of order ay y

and EweY e have been neglected in the expression for the energy density, as

appropriate for large strains and for E << E . For a power law relatingw

stress and strain on the notch surface in the hardening range,

a = ay (C/Ey)N , > Cy (20a)

eq. (14b) results in

i j i/(1+N)

(N+1/2) (N+3/2) r (N+1/2) J
£max a NY r (1/ 2 ) r (N+l) Cyayrt]

r(N+1/2) (N+3/2) r (N+1/2) o aS£ I r(1/2)rF(N+I) ( rt

(20b)

where r..) is the Gamma Function. Again terms of order a y C y have been

neglected in the energy density.

The reader is cautioned again that the latter forms in expressions above

for £max apply only to the vase of small scale yielding near the narrow

notch of length 2a in fig. 4 (that is, for a. less than approximately half

of ay ); we consider approximations for large scale yielding later. Also, we

have approximated strains on the notch surface by requiring compatibility with

the homogeneous deformation of the void interior, eq. (14b). Had we assumed

instead that the energy density distribution remains the same as for the linear
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elastic elliptical void problem, eq. (15b), larger values for Emax would be

obtained in all cases except the linear elastic. The largest difference occurs

in the elastic-perfectly plastic case, for which eq. (15b) leads to

2

1 15 J a
1 2 + J) 0.50 c + 2.95 e (-0) a- (21)

max 2 8 y a 8 rt

for loads greater than the initial yield value. The equation is shown by the

upper dashed curve in fig. 6. The difference with eq. (18c), based on homo-

geneous deformation of the void interior, approaches 25% when the concentrated

strain is large compared to the yield strain.

A lower bound on the maximum concentrated strain is readily established,

for

J = f Wdy < W(cmax ) dy = 2 rt W(cmax) (22a)
rt rt

with the latter form for a semi-circular tip.

For the elastic-perfectly plastic case, the resulting inequality is

2j a

Cmax (Cy + Jyr =0.50 c + 1.57 c (-) ar (22b)

whenever the load is large enough for the right side of the inequality to

exceed £y . This lower bound, along with the lower bound resulting in the

elastic range, is shown by the lower dashed curve in fig. 6.
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The Barenblatt-Dugdale Crack Model

Sharp cracks lead to strain singularities. The Griffith theory of

brittle fracture [16,17,10] ignores the unrealistic prediction of conditions

at the crack tip, and employs an energy balance to set the potential energy

decrease due to crack extension equal to the surface energy of the newly

created crack faces. An alternate approach due to Barenblatt [18] removes

the singularity by considering a cohesive zone ahead of the crack, postulating

that the influence of molecular or atomic attractions is representable as a

restraining stress acting on the separating surfaces, fig. 7. The restraining

stress a = a(S) is a function of separation distance 6 as in fig. 7b.

Dugdale [19] employed the same model to discuss plane stress yielding near

cracks in thin sheets. As further studies have verified [20], yielding is

limited to a narrow slit-like zone ahead of the crack of height approximately

equal to sheet thickness when the plastic cohesive zone is large compared to

thickness. Except for a perturbation near the tip, yielding then consists of

slip on 450 planes through the thickness so that the plastic strain is*

essentially the separation distance divided by the sheet thickness. Restraining

stresses typical of plane stress yielding are shown in fig. 7c.

We may evaluate our integral J of eq. (2) by employing path independence

to shrink the contour r down to the lower and upper surfaces of the cohesive

zone as in fig. 7a. Then since dy = 0 on r ,
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= - = ds
- r

d6 dd { o() d6} dx= dx f - f--
fcohes. zone dx cohes. zone 0

6 ftf a(6) d6 (23)

where 6t is the separation distance at the crack tip. Thus, if the crack

configuration is one of many for which J is known, we are able to solve for

the crack opening displacement directly from the force-displacement curve.

Now let us compare the Griffith theory of elastic brittle fracture with

the fracture prediction from the Barenblatt type cohesive force model. Letting

6 be the separation distance in fig. 7b when the atoms at the crack tip can

be considered pulled out of range of their neighbors, the value of J which

will just cause crack extension (or, if crack extension is considered as

reversible, will maintain equilibrium at the current crack length) is then

J = a(6) d6 (cohesive theory) (24a)

On the other hand, the Griffith theory regards the total potential energy of

a cracked body as P + 2 S Z , where I is crack length, S is surface energy,

and P is the potential energy defined by the continuum mechanics solution

without regard to cohesive forces. Determining equilibrium by setting the

variation in total potential to zero,
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= 2 S (Griffith Theory) (24b)

We conclude that the Griffith theory is identical to a theory of fracture

based on atomic cohesive forces, regardless of the force-attraction law, so

long as the usual condition is fulfilled that the cohesive zone be negligible

in size compared to characteristic dimensions (small scale yielding). This is

because the area under the force-separation curve is by definition twice the

surface energy and, as we have noted, J is equal to the potential energy

decrease rate for small scale yielding.

Strain hardening behavior is also readily included in the Dugdale model;

analyses to date have been limited to perfect plasticity. For example, with

linear work hardening

OM = (25a)
) wh

where h is sheet thickness, E a tangent modulus, and the strain approxi-w

mated by 6/h , eq. (23) gives the crack opening displacement as

a h 2 Ew J 1/2
6t = - {(1 ) -11

w h a y

th E 2
Y al + 2,r (-) (25b)

E w E ay

In the latter form the plane stress value of J for the crack of length 2a ,

appropriate for small scale yielding, has been used. With negligible strain
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hardening (Ew 0) this becomes

2w a aso E 
(25c)

as is obvious from eq. (23). The simple picture of plane stress yielding in

the Dugdale model is correct only at distances from the crack tip greater than

the sheet thickness, approximately, with a truly three dimensional deformation

state prevailing very near the crack tip [20]. However, in thin sheets with the

plastic zone extending over a distance several times the thickness, estimates of

crack opening displacements may be expected to be reasonably accurate as the

tip displacement is an integrated effect of plastic straining along the entire

length of the plastic zone. Experimental confirmations of perfectly plastic

predictions for plastic zone sizes [19] and crack opening displacements [20]

have been satisfactory, and opening displacements have proven a useful, if

imperfect, measure of the severity of local deformations in the formulation of

fracture criteria [21].

Complete solutions of the Barenblatt-Dugdale model have been given for

the case of a constant cohesive stress a0 acting whenever the separation

distance 6 is non-zero. The resulting opening displacement for the crack

of length 2a in a uniform stress field, fig. 4, is [4]

6 = ( ) log sec ( (26a)
t I E --

2for plane strain, with the 1 - v factor removed for plane stress. But
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since 6t = J/a 0 from eq. (23), we can solve for J to find

8Ul- V2 ) a 02  fJ WE log sec ( )

Expanding the logarithm secant term in a series and retaining only the first

non-vanishing term, as appropriate when ./a0 is small, we obtain the linear

elastic expression for J of eq. (9) and verify our procedure of using the

linear elastic expressions in cases of small scale yielding. Solutions of the

Barenblatt-Dugdale model with constant cohesive stress have been given for

other configurations of single cracks in infinite bodies [4], including wedge

force loadings, and for an infinite periodic array of collinear cracks [22),

an approximation for single edge, double edge, and central cracks in fizite

width plates. Crack opening displacements from these solutions may be used

to compute J , as in eqs. (26). In view of the physical interpretation

given J as an energy variation rate, we do not expect resulting expressions

to be too tied to the model. Thus, after a judicious choice of a0 to account

for possible hydrostatic stress elevations of plastic limit loads as in the

double edge notched plate [23], Barenblatt-Dugdale estimates of J may be

used as an approximation in cases of large scale yielding for computations

such as those of the last section. Fig. 8 shows a comparison of the linear

elastic (eq. 9) and constant cchesive stress Barenblatt-Dugdale (eq. 26b)

expressions for J for the configuration of fig. 4. The plot is in dimension-

less form, with E J/[w(l - 2 ) 002] shown as a function of the applied stress

ratio a ao . The linear elastic (small scale yielding) result is a parabola
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with the dimensionless J equal to the square of the stress ratio. The

closeness of the two curves at low stress levels indicates the great use-

fulness of the small scale yielding approximation.

Because it will be useful for a later comparison with plane strain

plasticity, we record here the expression for the length of the cohesive zone

in the case of constant cohesive stress a 0 and the crack of length 2a in

a uniform stress field. Letting R be the cohesive zone length, the result

is [4]

ro 22
ia1 2 a 2

R = a se- c- a (-) . (26c)
1 2% aj

The latter form is the first term in a Taylor expansion. Again we verify

that the elastic stress intensity factor (eq. 9) controls inelastic behavior

in the small scale yielding range. Setting a0 = a (the yield stress in

tension), R is the plastic zone size in plane stress predicted by the Dug-

dale model. The model is valid when the computed value of R is several

times the sheet thickness.

Other known elastic-plastic solutions for cracks and notches may be used

to estimate J for cases of large scale yielding. In particular the many

available perfectly plastic [5,7,8] and strain hardening [2,6,8] solutions

for cracks in anti-plane stress fields may be put to use. Resulting detailed

evaluations of J are deferred in the interest of brevity. It is simply noted

here that in all cases the validity of our small scale yielding result (last

term of eq. 10) is confirmed, and that in the perfectly plastic case the large
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scale yielding range prediction of the deviation of J from the small scale

yielding formula is not significantly different from that of the Barenblatt-

Dugdale model.

Plane Strain Yielding Near a Crack

An approximate treatment of perfectly plastic plane strain yielding near

a crack may be based on the slip line theory [15] and our considerations of

path independence. Slip line theory is really a valid consequence of a Tresca

or Mises yield criterion only when elastic straining is incompressible or when

plastic strains greatly exceed initial yield strains. However, we shall see

that it is appropriate for our present purposes. Suppose tentatively that the

plastic region completely surrounds the crack tip as in fig. 9. The exact

shape of the elastic-plastic boundary is unknown, as indicated by the question

mark. The traction free boundary condition on the crack surface determines a

constant stress state in the largest isosceles right triangle (A in fig. 9)

which may be fit into the plastic zone, and in this region

a xx = 2 Ty , a yy = xy = 0 (region A) (27a)

where T is the yield stress in pure shear. We choose tension instead of

compression for a since the latter choice would result in biaxial com-

pression ahead of the crack. Any slip line emanating from the crack surface

and finding its way to the x axis in front of the crack must swing through

an angle of w/2 . Thus a hydrostatic stress elevation of 2 Ty(w/2) must
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result ahead of the crack [15]. Constant stresses on this line determines

a constant stress state in a diamond shaped region (B in fig. 9), and there

axx = WTy a , yy = (2 + W) Ty , axy = 0 (region B) . (27b)

A centered fan (C in fig. 9) must join two such regions of constant stress

[15,24] and stresses in the fan are

rr = ee = U+--) Ty - 2Ty ' re = Ty (region C). (27c)

The resulting slip line field is familiar in the limit analysis of rigid

indentors [15,24] and double edge notched thick plates [23,25].

Large strains can occur only when slip lines focus, as in the centered

fan, but not in constant state regions (A and B) unless strains are uniformly

large along the straight slip lines and thus out toward the elastic-plastic

boundary (where strains must be small). One then anticipates strains on the

order of initial yield values in the constant state regions. As we shall see,

only the strain singularity in the centered fan enters the results we are

heading toward. Assuming elastic incompressibility and agreement between

principal shear stress and strain directions, Err =e = 0 in the centered

fan. This implies that displacement components are there representable in the

form [15,24]

ur = f (e) , ue = -f(e) + g(r) (28a)
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Note that in a proper incremental theory, these equations apply to velocities

instead of displacements. The shear strain cre in the centered fan is

given by

Cre 2 r a6 + r -r 2 r 2 g (r)

(28b)

Now consider the path independent integral J , eq. (2). Taking r

to be a circle of radius r centered at the crack tip and expressing all

quantities in polar component form, there results

J = r {W cos 0 - Orr [Crr cos e - (C - w) sin e]

- are [(Cre + W) cos e - Cee sin e0l dO . (29a)

Here w is the rotation, measured positive contraclockwise:

1 aue ue 1 Bu r) (29b)
2 2 • r r r 3e

We evaluate the integral by letting r ÷ 0 (as permitted by path independ-

ence). Since strains are non-singular in the constant state regions, only

the portion of the integral taken over the centered fans (w/4 < l10 < 3w/4)

contributes in the limit. We now express the energy density, strains, and

rotation in a form appropriate when r -÷ 0 . First note that arbitrarily we
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may set f(r/4) = 0 . Then g(r) represents the 6 direction displacement

of the straight line boundary between regions B and C in fig. 9 . Since

strains are bounded in the constant state region, the displacement is zero at

r = 0 and 6 'rw/4 . Thus

0'n lrn g(r)

g(O) 0 and g (0) = r - -0 r (30a)

and expressions for displacements, strains, and rotation very near the crack

tip become

t I

ur = f (e) , ue = -f(e) (f(w/4) = f (r/4) = 0)

II

e- = f (e) + f(e) (30b)•rr 8 r2r

The energy density for an elastically incompressible perfectly plastic

material is

W = 1GY2 (Y < 7y) W = T Y - l Ty yy >Y(3a
21 2 1

Here Yy = Ty/G is the "engineering" yield strain in shear and

S (Crr - CLe) 2 + 4 2ej 1/2 (31b)

is the principal shear strain. We may see that the expression given for W
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when y > y is correct in the sense that any set of stresses satisfying

dW = a..dc.. also satisfies the Mises or Tresca yield condition and gives a
1] 1]

common ratio of deviatoric stress components to deviatoric strain components.

Thus as r + 0 in the centered fans

it

W y f (0) + f(e) (31c)

Letting r ÷ 0 in eq. (29a), the result for J then becomes

J = 2Ty r f (e) + f(e)] [cos e + (1 + 37- - 26) sin 0] de
w/ 2

(32)

Regarding J as known, we get an approximate solution by picking a reasonable

form for f(6) containing an unknown constant and determine the constant by

evaluating the integral. Before a bit of further analysis to identify reason-

able choices, we review our assumptions. Elastic compressibility, rather than

our assumed incompressibility, appears unimportant, at least in eq. (32), as

only the strain singularity contributes and slip line theory is valid when

strains are large compared to initial yield strains. The more serious assumption

is that the stress field given by eqs. (27) is assumed to actually occur near the

crack tip. As indicated, this stress field is correct if the plastic zone com-

pletely surrounds the crack tip. Some as yet unpublished etching experiments by

Prof. F. A. McClintock, discussed in [8], reveal a plastic zone that does sur-

round the tip. But other etching experiments [26] are inconclusive on whether

yielding actually occurs over any sizable region directly ahead and behind the
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crack tip. It is worth noting, however, that the elastic-plastic boundary

could cut sharply into the crack tip in regions A and B in fig. 9

without effecting the validity of our stress field very near the tip. In

particular, the stresses given by eqs. (27a and b) could be valid right at

the crack tip in elastic material, with a steady decay of the resolved shear

stress away from the yield value at non-zero distances from the tip in regions

A and B . The centered fan could then still result, and eq. (32) remain

valid. It is especially interesting that a result of just this sort occurs

for the perfectly plastic anti-plane strain crack problem. In that case a

construction of the stress field on the assumption of a plastic zone sur-

rounding the tip leads to a fan of anti-plane shear lines centered at the

crack tip in the region x > 0 of fig. 9 (aez ` Ty) , and constant stress

states adjoining the crack surfaces for x < 0 (axz =T y) . But exact

solutions [2,5,7] reveal an elastic-plastic boundary extending ahead of the

crack and cutting into the crack tip tangentially to the boundary between the

centered fan and constant stress regions. The true plastic zone encloses only

points in the centered fan region; in what was apparently a constant stress

plastic region, there is elastic behavior with a steady decay of the resolved

shear stress away from the yield value as one moves away from the crack tip.

Let us define a function R(O) by

'i

Y R(O) = f (e) + f(e) . (33a)

Then from eqs. (30b,31b), the "engineering" shear strain near the crack tip
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in the fan is given by

R(0) (33b)
Y r

Note from eq. (28b) that this equation would apply throughout the centered

fan if g(r) were a linear function of r (as would be the case if the con-

stant state region B in fig. 9 underwent a homogeneous strain). Thus R(e)

is an approximate indication of the distance to the elastic-plastic boundary,

and we can estimate the plastic zone size by writing eq. (32) in the form

37r/4 r 3?
J = 2T Y f/4 R(e) [cos e + (l + .ý- - 20) sin 0) dO . (33c)

For a given choice of R(e) , displacements near the crack tip are computed

from eqs. (30b) by solving the differential equation (33a) under initial con-

ditions f(n/4) = f (w/4) = 0 . It is also useful to write eq. (32) in terms

of cartesian components of displacements:

u = ur sin e + u, cos ey r

u = ur cos 0 - u8 sin 6 (34a)

Differentiating with respect to 8 and using eqs. (30b), in the fan

du ,d y = [f (6) + f(8)] sin 0 = y R() sin 8
dO

du ,x = [f (0) + f(e)] cos e = y R(0) cos e (34b)dO
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The ordinary differentiation symbol is used as displacements depend only

on 0 very near the tip. We can then estimate crack opening displacements

by writing eq. (32) in the form

3w/4 du
dJ =cos e t U + 3- 20)] do (34c)

Let us first consider the crack opening displacement 6t 2u at 6 = 3wr/4

Assume as an approximation that du y/do is symmetric about e =w/2 . From

eq. (34b), this is equivalent to assuming symmetry of R(O) about the vertical:

R(r/2 + 8) = R(w/2 - 8). The bracketed term in eq. (34c) may be split into a

symmetric part equal to (1 + w/2) and an anti-symmetric part. The anti-

symmetric contributes zero to the integral and thus

J 2Ty (1 + w/2) w/4  du Y (1 +d

21t(i - v 2 )c2 a2 Ja

t 2 + W T = (2 + w) E T (

Here, as throughout the paper, the latter form applies for small scale yielding

near a crack of length 2a in a uniform stress field a. . Comparing with the

Dugdale plane stress value (eq. 25c) for the same remotely applied stress and

crack length, and for v = 0.3 , the plane strain crack opening displacement is

61% of the plane stress value for a Mises yield condition (a = r T y) and

70% for a Tresca yield condition (ay = 2T y) . Note that if R(e) is symmetric

about 0 = w/2 , as we have just assumed, then an integration of the latter of

eqs. (34b) gives ux = 0 at e = 31r/4 . This means that the crack opens up
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into a rectangular shaped tip, much as observed by Laird and Smith [26].

An integration by parts in eq. (34c) expresses J in terms of an integral

of uy times a function of 0 . From eq. (34b) du y/dO is non-negative

since R(M) is non-negative, so that uy s 6 t/2 . Applying this inequality

to the expression for J (after integration by parts), one obtains a lower

bound on the crack opening displacement:

6 >1 1 J (36)
t 2 2+ 7 T (

Our reason for concern with crack opening displacements is shown in

fig. 10. The slip line field of fig. 9 suggests no intense strain concentration

ahead of the crack. But when the slip line field is drawn for a crack blunted

by plastic deformation, a very different picture results on a small scale of

the order of 6t . The fan C becomes non-centered and its straight slip lines

focus into a region D of intense deformation. For simplicity of illustration,

the crack tip has been drawn as a semi-circle in fig. 10 and the associated

exponential spiral slip line field [15,24] extends a distance of 1.9 6t

ahead of the blunted tip. From estimates of the plastic zone size to be given

shortly, we shall see that 6t is of the order of the initial yield strain

times a linear dimension of the plastic zone, so that the intense deformation

region is extremely small and fig. 10 is essentially fig. 9 with a magnification

in linear dimensions of the order of one over the initial yield strain. Since

the blunted region is small, an effective procedure would be to perform an

incremental analysis of blunting by regarding the constant displacement rate

along each straight slip line of the noncentered fan to be given by the rate
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of increase of u = u (6) of our present analysis (where 6 is now ther r

inclination of a given straight slip line and is identical to the polar

coordinate e at distances from the tip large compared to 6t) .

Calling R(e) the distance from the crack tip to the elastic-plastic

boundary, as an approximation, let us assume that

R(e) = R (a constant) (37a)

so that the boundary is an arc of circle of radius R in the centered fan.

Substitution into eq. (33c) estimates the plastic zone dimension as

GJ r(l - v) (Ga 2 (27b)
F (2 + w) T2 2 (2 + a

We shall see that this is actually the smallest possible value which the

maximum value of R(M) may have. Near crack tip displacements in the fan

associated with this choice of R(M) are

ur = YYR sin (e - w/4)

u = -YyR [1 - cos (e - w/4)] (37c)

Another choice for R(e) ,

R(e) = R sin (20 - w/2) (R a constant) (38a)
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gives an elastic-plastic boundary which cuts into the crack tip along radial

boundaries of the centered fan (R(M/4) = R(37r/4) = 0) as discussed earlier.

In this case eq. (33c) estimates the maximum plastic zone dimension as

2

R3GJ = 31(l - v) (-f) a , (38b)
2/2 (2 + 7) T2 4F2 (2 + ir) TY

50% greater than the estimate of eq. (37b) above. Associated near tip dis-

placements are

U 2YR [cos (e - w/4) - cos (20 - w/2)]

r 3

ue - R [2 sin (e - 7/4) - sin (20 - 7/2)] . (38c)

Comparing with the displacements of eq. (37c), both give the crack opening

displacement of eq. (35), as they must since R(8) is chosen symmetrical

about 8 = n/2 in both cases. u is the input to the large deformationr

region in an analysis of blunting, and the two predictions of ur agree

identically for e = w/4 , 7/2 , and 3w/4 . The greatest difference occurring

for intermediate angles is about 18% of the maximum value of ur = 6t/(2F2)

occurring at e 3ff/4 , so predictions of blunting appear insensitive to the

choice of R().

Comparing the two estimates of plastic zone size (eqs. 37b and 38b) with

the plane stress zone size (eq. 26c) predicted by the Dugdale model, for
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v = 0.3 eq. (37b) predicts a plane strain R which is 37% of the plane

stress R for a Mises material and 49% for a Tresca material. Corres-

ponding figures for eq. (38b) are 55% and 73% . Observations [27] by

etching suggest a figure in the neighborhood of 50% . Eq. (33c) gives a

lower bound on the maximum value of R(e) occurring in the fan. Inserting

the inequality R(e) s Rmax , one obtains

2

R a . (39)
max w b(2 i+a) T 2 v22 (2 + 7r) T y

Yy

The lower bound is identical to the value of R given by eq. (37b)
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fig. 1. Flat surfaced notch in two-dimensional

deformation field (all stresses depend only on

x and y). r is any curve surrounding the notch

tip; rt denotes the curved notch tip.

Yh

CLAMPED BOUNDARIES, U IS CONSTANT
(a)

(b)

fig. 2. Two special configurations for which the path independent integral

J is readily evaluated on the dashed line paths r shown. Infinite strips

with semi-infinite notches, (a) constant displacements imposed by clamping

boundaries, and (b) pure bending of beam-like arms.
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PLASTIC ZONE o'ij'-a K, (27r"r)-I/2 fij

•*(a) (.b)

fig. 3. (a) Small scale yielding near a narrow notch or crack in an elastic-

plastic material. (b) The actual configuration is replaced by a semi-infinite

notch or crack in an infinite body, actual boundary conditions are replaced by

the requirement of an asymptotic approach to the linear elastic crack tip

singularity stress field.

NOTCH SURFACE

K2o-/

fig. 4. Narrow notch or crack of fig. 5. Coordinates employed in

length 2a in infinite body. description of notch surface.

Uniform remote stress a . 0 is tangent angle and rt( )

is radius of curvature.
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8CyEy r , OR 2.43 -y rt CONFIGURATION OF FIG. 4

fig. 6. Strain concentration by flat surfaced notch with semi-circular tip of

radius rt in perfectly plastic material.
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8= SEPARATION DISTANCE
rF (b) ATOMIC ATTRACTION

Y 8t
0- ((8)= RESTRAINING STRESS lory

(a) COHESIVE ZONE AT TIP (c) PLANE STRESS YIELDING

fig. 7. Dugdale-Barenblatt crack model. (a) Cohesive zone at crack tip with

restraining stress dependent on separation distance. (b) Force-displacement

relation for atomic attraction in elastic brittle fracture, and (c) for plane

stress plastic yielding in thin sheet.



EVALUATION OF PATH INDEPENDENT INTEGRAL 5

FOR CRACK OF LENGTH 2a IN INFINITE BODY UNDER STRESS O-co.
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from Barenblatt - Dugdale crack model (can be used to approximate J in the

large scale yielding range for other problems of cracks or narrow notches).
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fig. 9. Perfectly plastic plane strain slip line field at a crack tip.

Constant stress regions A and B joined by centered fan C . Position

of the elastic-plastic boundary is unknown; it may cut in toward the crack

tip in regions A and B (see discussion).

A C/

1. 9 -

fig. 10. Crack tip blunting creates a small region D of intense deforma-

tion ahead of the crack. This is fig. 9 magnified in linear dimensions

by a large factor of the order of one over the initial yield strain.


