
DISCUSSION 

certain boundary-value problems. The solutions for such steady-
state problems as that considered by the author, namely, a surface 
load moving at uniform speed, provide asymptotic approximations 
to the corresponding solutions for elastic media. These approxi-
mations cannot be expected to be uniformly valid for moving-load 
speeds in the neighborhoods of any of the Love waves. It seems 
likely that the most important of these waves is the lowest mode, 
which tends to the Rayleigh wave for the upper layer as the thick-
ness of that layer becomes large compared with the wavelength; 
nevertheless, the author was guilty of oversimplification in re-
ferring only to this mode. The remaining modes would certainly 
have to be considered in the solution of the moving-load problem 
for a two-layered elastic half-space; indeed, it appears likely that 
the existence of these modes precludes an explicit solution of this 
problem. 

Fig. 2 Real roots of A(k, V) = 0 

/
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which do not exist, not even in the sense of principal values. For 
k > 0 the equation A(k, V) = 0 also appears as the dispersion 
equation in the study of free waves in a layered half-space. For 
a relatively stiff and heavy layer the writer has computed the real 
roots of A(k, F ) = 0 for both welded and smooth contact. It is 
seen from Fig. 2 that for smooth contact a double zero appears for 
V/cn ~ 0.85 at kh = 0.24. At that critical velocity we have 
integrals of the type (10), which blow up, and we encounter a 
resonance effect. This type of resonance effect does not occur in 
a two-layered fluid half-space. For bonded contact a similar 
resonance effect appears at the velocity of Rayleigh waves of the 
supporting half-space. Since the motion in the layer is now not 
exponentially decaying, we expect the influence of layering to be 
of importance for load velocities close to c«2. It is seen from this 
example that for a relatively stiff layer the responses of a two-
layered fluid and an elastic half-space can be very different. 

Author's Closure 
The modal structure of a two-layered, elastic half-space was 

studied originally by Bromwich4 and has since been studied exten-
sively by others, notably Love.6 Extensive discussion and refer-
ences are given by Ewing, Jardetzky, and Press.6 The mode 
studied by Achenbach is a particular case of a Love wave (it 
should be remarked, however, that the particular model con-
sidered by Achenbach, in which the upper layer is both denser and 
stiller than the substratum, is rather unrealistic), and the mini-
mum in the dispersion curve (wave speed versus wave number) is 
typical; higher modes also exist, and their dispersion curves ex-
hibit multiple maxima and minima.7 The existence of these 
extrema implies the existence of higher-order points of stationary 
phase in the integral representations of the solutions to properly 
posed initial-value problems, but these can be handled by stan-
dard analytical devices. 

The virtue, as well as the deficiency, of the liquid model, vis-a-
vis its elastic counterpart, is that it does not exhibit a complicated 
modal structure and therefore permits the explicit solution of 

Stresses in an Infinite Strip 
Containing a Semi-Infinite Crack1 

J. C. RICE.2 While Professor Knauss' study provides a useful 
evaluation of a practical fracture testing configuration, no 
elaborate computations are required for determining the stress 
intensity factor and thus the singular crack tip stress state. In 
fact, from an independent estimate of the stress intensity factor, 
the results given in the paper are suggested to be in error. 

Irwin [l]3 has defined a stress intensity factor K, such that the 
stress directly ahead of the crack tip has the form (Fig. 1) 

Gy{x, 0) = Kii^irx)"^1 + nonsingular terms. (1) 

Then, judging from Professor Knauss' equation (33), his stress 
intensity factor K is related to Irwin's by 

IC = 
(1 - v*)bK, 

(2tt) i / :® fo 
(2) 

where v is Poisson ratio, E is Young's modulus, b is half strip 
width, v0 is vertical displacement of clamped strip boundary. 
Now defining —dV/dc as the potential energy per unit thickness 
drained out of a body by a unit crack length extension, Irwin [l]3 

has shown that 

dF 
dc 

Kl 
E (3) 

for plane stress, a factor of (1 — v-) appearing for plane strain. 
Irwin set the potential energy release equal to the work done in 
removing tractions from the new crack surface. The procedure 
is clearly valid for configurations as in Fig. 1, where boundary 
displacements are specified so that boundary forces do no work; 

1 B y W . G . Knauss, published in the June, 1900, issue of the 
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the studies of Bueckner [2] and Sanders [3] have demonstrated 
the general validity of equation (3). Swedlow [4] has recently 
presented results on energy releases in biaxially stressed systems 
which tend to contradict equation (3), however, an error in his 
computations may readily be inferred as he obtains an expression 
for dF /dc which is not negative definite. Rice and Drucker [5] 
proved directly from the theorem of minimum potential energy 
that dF /dc ^ 0 [note simply that the displacement field before 
crack extension is kinematically admissible after crack extension 
so that F(c 4- dc) ^ F(c)] . See [6] for an alternate proof. 

As Professor Knauss noted, the energy release rate is deter-
mined immediately for the configuration of Fig. 1 as 

dV 
dc 

'2b Wo 

TFo = 
Ev o2 

2(1 - v2)b2 

Thus Irwin's stress intensity factor is, from equations (3-5), 

Ev o 
K, [(1 - f2 )6] , / 3 ' 

Ev o K ' = 

K, = 
(12) ' / 'M 

b " 

dV 
dc 

IC „i2 

2 G 

Km = Gwo ( — 

Now it is easy enough to show that the shear stress distribution 

(11) 

(rJO0 , 
T,J, + vr„ = — exp — (x + iy) [ i <* + * > ] 

-|2 sinh i ( x + i y ) (12) 

(4) 

where IFo is the elastic energy density of the region far to the right 
of the crack tip. For plane stress conditions and a linearly elastic 
material, 

(5) 

or, according to Professor Knauss' definition, equation (2), 

K = [ ( 1 2x"2)&] '' ~ 0-345b'A when " = (6) 

Professor Knauss reports a value of 0.707 b h i g h by a factor of 
slightly over 2. 

The same procedure may be employed for other boundary 
conditions. For example, if the clamped boundary condition 
(u = 0) is replaced by a condition of zero shear stress (r x y = 0), 

(7) 

Also, if the horizontal boundaries are stress free and loads are 
applied by bending moments il/ per unit sheet thickness acting on 
the cracked arms remotely far away along the negative x-axis, 

(8) 

solves the stated problem. Computing the shear stress directly 
ahead of the crack and comparing with equation (9), equation 
(11) is independently verified. 
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Author's Closure 
Professor Rice's comment with respect to the numerical value 

of the stress concentration factor is correct. Indeed, one of the 
reviewers had suggested "an independent estimate of the stress 
intensity factor" without indicating the method to be used in this 
calculation. Interpreting the suggested check as an estimate of 
the error incurred in truncating the infinite product which enters 
the stress intensity factor, footnote 5 was added in the paper. 
The writer is thus indebted to Professor Rice for clarifying the 
order and nature of the discrepancy. 

On the basis of apparently successful evaluation of similar in-
finite products for calculating stress intensity factors4 it was felt 
that the numerical evaluation of the infinite products was suf-
ficiently accurate. Professor Rice's calculation implies that this 
assumption was fallacious inasmuch as the inherent error in the 
roots when coupled with the slow convergence of the products 
could lead to a sizable error. 

It turns out that the infinite product need not be evaluated in 
order to calculate the stress intensity factor. In fact, it follows 
from equation (20f and the calculations in the Appendix of the 
paper that the function 

The procedure given here of calculating stress intensity factors 
for the configuration of Fig. 1 may be directly verified in the 
simpler case of antiplane strain, a case for which detailed stress 
distributions are more readily obtained. Irwin [1] defined a 
stress intensity factor Km for this case such that the stress 
ahead of the crack has the form 

TUZ(X, 0) = KmiZnx) - 1 / * + nonsingular terms, (9) 

and has shown that the energy release rate is then 

F(co) = (1 - P2) 
w (3 - v) sinh2 co + (1 + + 4/(1 + v) 

(3 — v) sinhoi cosho; — (1 + v)w 

can be factored into 

(1) 

(2) 

|Arg OJ| < 

(10) Substitution into (26) gives for the stress ay on the crackline 
and ahead of the crack as x -*• 0 

(G is shear modulus). Now, suppose Fig. 1 is a cross section of an 
infinitely long prismatic body and the antiplane displacement J«O 
is imposed. Then the strain energy density as x —»• + <» is read-
ing computed and equations (4, 10) lead to 

oy(x, 0) 
iEvp 1_ j " " j 1 - 1 \ 'A 

~ 1 - J o I 2 ) W 
exp (-iwx)dw + 0 (1 ) (3) 

4 R . A. Westmann, "Pressurized Star Crack , " J. Mech. and Phys., 
vol. 43, 1964, pp. 191-198. 

5 Italicized equation numbers refer to the original paper. 
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-̂ INGLIS' SOLUTION 
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2 Stress intensity factor K as a function of crack length, v = l /2 
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u- ' / ' + 0(1) ( 4 ) 

Upon defining the stress intensity factor K as in (83), one has 

I •/« 

which is in agreement with equation (6) in Professor Rice's com-
ment (unit strip half-width). 

Professor Rice's calculations also suggest a way in which equa-
tion (34), derived for the case of shear free boundaries, may be 
modified to account for clamped boundaries. Note that the stress 
intensity factors for the clamped strip may be obtained by re-
placing 6 by (1 — v2)b in the expression derived for the shear 
force strip [Professor Rice's equations for K\ following his equa-
tion (5) and equation (7)]. Upon replacing b in equation (34) by 
(1 — v2)b, one obtains thus 

( 5 ) 

Observe that for c/b « 1, Inglis' solution is obtained as one would 
expect on physical grounds and that the effect of the boundary 
condition (clamped versus shear free boundary) is felt only as 
c/b -*• 0(1). Accordingly, Fig. 5 in the paper appears modified 
as shown in Fig. 2 in this Closure. 

Natural Frequencies of Vibration of an 
All-Clamped Rectangular Sandwich Panel1 

C. W. BERT.2 The author is to be congratulated for presenting 
an interesting analysis. However, the agreement with experi-
mental results is not as good as might be desired. In fact, the 
percent difference computed as follows: 

(Theoretical lower bound — Exp.)/Exp. 

decreased fairly systematically from 10.4 percent at the lowest 
natural frequency to 5.2 percent at the highest frequency. The 
fact that the difference decreased with increasing frequency sug-
gests that the deficiency in the analysis is associated with t he pure 
bending contribution (and the normal-direction inertia) rather 
than the pure shear contribution (and the rotatory inertia), since 
the pure shear modes have much higher natural frequencies than 
the bending modes. The writer agrees with the author that the 
assumption of core inextensibility in the thickness direction is 
reasonable for practical ranges of facing thickness to core depth 
and identical facings. The ratio of GxJGyl = 2.6 seems to be 

1 B y C. E. S. Ueng, published in the September, 1966, issue of the 
JOURNAL OF APPLIED MECHANICS, vol . 33, TRANS. A S M E , vol. 88, 
Series E, pp. 683-684. 

2 Professor of Aerospace and Mechanical Engineering, University of 
Oklahoma, Norman, Okla. M e m . A S M E . 

rather high for hexagonal-cell honeycomb core material; values 
ranging from 1.5 to 2.0 would be more typical. 

In view of these considerations, one would be inclined to agree 
with the author's explanation that the discrepancy is due to the 
lack of complete edge clamping in the experiments, except for the 
following point: The curve of natural frequency co versus edge 
rotational spring constant K, would be expected to have an 
"upper plateau" region in which large changes in Kr have a 
negligible effect on co. (This is the case for a homogeneous iso-
tropic circular plate with elastic rotational edge restraint.3) 

Author's Closure 
The author thanks Professor Bert for his comments and the 

interest he has shown in the paper. The author agrees with 
Professor Bert on the point that the deviation between the 
analytic results and experimental values may have been caused 
by not only the incomplete fixity on the edges but also some other 
reasons, such as a possible deficiency in the analysis associated 
with the bending contribution. From the interesting article 
by Kantham,3 it seems that this possibility exists. However, 
it is rather difficult to use the idea given in that article to measure 
the fixity for the problem reported in the paper. 

3 C . L . Kantham, "Bending and Vibration of Elastically Re-
strained Circular Plates," Journal of The Franklin Institute, vol. 265, 
1958, pp. 483-491. 

Three-Dimensional Stress Distribution 
Around an Elliptical Crack 
Under Arbitrary Loadings1 

W. T. CHEN.2 The writer of this Discussion has also treated the 
problem of a flat elliptical crack under shear and his results have 
recently been published.3 In his work the elliptical crack occurs 
in a transversely isotropic elastic solid, and lies on a plane per-
pendicular to the material axis. It is interesting to observe the 
differences in the formal formulations and the mathematical ap-
proaches, although both of the physical problems can be treated 
by either method. 

In his paper, this writer has not provided expressions for the 
stress intensity factors defined in the authors' paper as k2 and k3. 
It may be a useful addendum to the authors' work to record these 
expressions for the transversely isotropic elastic solid. 

It has been found that k2 and kz may be written down using 
slightly altered versions of the authors' equations (25) and (33). 
Define the two constants A and B [authors' equations (25a) and 
(256)] by 

ab2k2q cos co 
(k2 - v)E(k) + vk'2IC(k)' 

B = 
ab2k2q sin co 

(A:2 + vk'2)E(k) - vk'2K(k) 

(1) 

(2) 

All the functions and parameters are the same as in the paper 
except for v, which is now defined as 

v = 1 -
)3 

( 3 ) 

where 

1 B y M . IC. Kassir and G . C. Sill, published in the September, 1966, 
issue of the JOURNAL OF APPLIED MECHANICS, vol . 33, TRANS. 
A S M E , vol . 88, Series E, pp. 601-611. 

2 Department of Advanced Technology, I B M Corporation, Endi-
cott , N. Y . 

3 W . T . Chen, " O n Some Aspects of a Flat Elliptical Crack Under 
Shear Stress," Journal of Mathematics and Physics, vol . 45, June, 
1966, pp. 213-223. 
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