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ABSTRACT: This paper surveys the continuum mechanics of deformation
near cracks and its application to propagation by fatigue loadings. Re-
sults of various elastic-plastic models are summarized and compared in
relation to hardening behavior, size effects, and large scale plastic yield-
ing. The role of the elastic stress intensity factor variations in governing
local plastic flow, and thus crack growth rates, is emphasized for the
common high-cycle low-stress fatigue situations. General features of
crack propagation are discussed, and theories are examined which seek
to relate contintum analyses to separation mechanisms.
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This work views crack propagation as primarily a problem in con-
tinuum mechanics. Part I surveys the elastic and elastic-plastic stress
analyses of cracked bodies, with emphasis on the plasticity. In addition
to well-known results based on models of perfectly plastic anti-plane
shearing and discrete surfaces of tensile yielding or slip (equivalently,
continuous dislocation arrays), some recently obtained results on work-
hardening and anisotropic perfect plasticity are summarized, and methods
are presented for the modeling of plane strain yielding. Emphasis is
placed on the common result of all plasticity analyses that the coefficient
of a characteristic singularity in elastic solutions determines the plastic
deformation in situations of small scale yielding. The influences of hard-
ening behavior, finite width effects, and large scale yielding are illustrated
and the predictions of various models compared.

Part IT considers the mechanics of fatigue crack propagation. Elastic-
plastic responses to cyclic loading are determined for perfectly plastic
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248 FATIGUE CRACK PROPAGATION

and a type of stable hardening behavior. Effectively, the yield stress is
doubled so that cyclic flow zones and variations in plastic deformations
are smaller than for monotonic loading. Crack tip blunting by large de-
formations and related effects are treated approximately. General features
of fatigue crack growth are surveyed, and the extensive evidence is cited
supporting a primary conclusion of continuum analyses: that crack
growth rates are determined by elastic stress intensity factor variations
for the small scale yielding situation common in low-stress high-cycle
fatigue. Results pertaining to mean load, sheet thickness, and mode transi-
tion effects, delays in crack extension due to overloads, growth under
bending loads, and growth by random applied loads are also noted and
interpreted in continuum terms. Theories of crack growth relating con-
tinuum considerations to “damage” accumulation and material separation
are examined. Further progress requires better continuum analyses, in-
corporating crack blunting by deformation, and clearer ideas of separa-
tion mechanisms. :

Part I Continnum Mechanical Description of Deformation Near
Cracks »

The fundamental importance of the origin, stable growth, and final
propagation of cracklike flaws in material failure has stimulated a rapidly
increasing amount of research on continuum mechanical descriptions of
the stress and deformation fields in cracked bodies. Advances in the
elastic and elastic-plastic modelling of crack tip deformations for various
geometries and methods of loading are summarized in this part of the
paper, and applications of these results in establishing a mechanics of
fatigue crack propagation are discussed in Part II. Primary attention
is given to elastic-plastic stress analyses, as no survey of the considerable
(but as yet far from complete or even reasonably satisfactory) work in
this area is currently available and several excellent surveys of the
purely elastic treatment of stress concentrations (Neuber [7],2 Savin [2]),
and cracks in particular (Irwin [3], Paris and Sih [4]), have appeared.

The objectives of continuum analysis in developing a theoretical frame-
work for crack propagation by fatigue or catastrophic fracture are.essen-
tially twofold. First, for various methods and histories of loading struc-
tures containing cracks of different sizes and orientations, we seek to
determine functions of the applied load and geometry which describe the
local deformations suffered by material near the crack tip. Postulating
dependence of fracture on this local deformation, parameters of im-
portance in crack propagation and expected characteristics may be iden-
tified for the organization and analysis of experimental results, and if

*The italic numbers in brackets refer to the list of references appended to this
paper.
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similarities exist in the local deformation fields for a class of configura-
tions, experimental data on one configuration may then be rationally ex-
tended to the prediction of behavior of others. As a second objective, we
envision continuum solutions as setting the boundary conditions on
microstructural processes submerged in the intense deformation field
near the crack tip and resulting in material separation, and seek to pre-
dict crack propagation behavior on the basis of models for accumulation
of “damage” and final separation. As will be seen, considerable progress
has and is being made along the lines of this first objective. Although
many theories have been proposed (see Part II), it appears that presently
the second objective of relating microstructural models of separation to
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FIG. 1—Crack of length 2a in infinite plane; uniform stress at infinity.

continuum deformation analyses, with subsequent predictions of crack
growth laws, is inadequately treated.

We begin by considering the elastic analysis of cracks and then take up
various plasticity models for crack tip deformation, starting with the case
of anti-plane strain, a case of little direct physical interest but one in
which the mathematical simplicity allows gaging the effect of various
types of plastic behavior. Then models based on discrete surfaces of
yielding or slip, which appear most appropriate for plane stress, and a
new model based on a slip line field for plane strain are considered.

Originally elastic-plastic solutions for monotonically increasing loads
are given. Solutions for unloading, cyclic loading, and general load-time
histories, as of interest in fatigue crack growth, are then given separately
in Part II. Only two-dimensional problems are considered, and primarily
the case of a single finite crack of length 2a in an infinite plane subject to
a uniform stress state at infinity (Fig. 1) is treated in detail, although ref-
erence is made to several other configurations.
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Linear Elastic Stress Analysis of Cracked Bodies

The characteristic feature emerging from all linear elastic solutions
to problems of cracks in homogeneous isotropic materials is the inverse
square root character of the crack tip stress singularity [4]. In particular,
components of the stress tensor o;j(0zz = Gy, oy = Tay , Tyy = 0y, €LC.)
are representable in the form [4]: |

i = r V2 [Kif10) + Kafi;060) + K fi7 0] ... .. (1)
-+ other terms nonsingular at the crack tip

where, as for example in Fig. 1, » and @ are polar coordinates introduced
at the crack tip. Here the symbols I, II, and III pertain, respectively,
to parts of the crack tip region stress field corresponding to displacement
discontinuities induced along the crack surface in the tensile, in-plane
shear, and anti-plane shear directions respectively, as in Fig. 2. The
dimensionless functions f73,, f3; , and fi;® depend on the orientation angle

%
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FIG. 2—>Modes of crack tip deformation.

6 only, and K;, Kj;, and Kjyy are the stress intensity factors, introduced
into fracture mechanics by Irwin, and again pertaining to the three
modes of crack tip deformation. The stress intensity factors may be
determined from complete solutions to boundary value problems after
an examination of the crack tip stress field and comparison with Eq 1;
coming from a linear theory, they must be linear functions of the applied
loads. Further, from dimensional considerations the K’s have dimensions
- of F L** (F denoting force and L denoting length). Thus if a cracked
body is loadéd with a remotely applied stress (dimensions of F L—2)
and crack length is the only characteristic length, the K’s are propor-
tional to the stress times square root of crack length. If a crack is loaded
by a concentrated force per unit thickness (dimensions of F L) applied
at the crack center, as for crack branches of equal length emanating
from a rivet hole in a sheet, so that crack length remains the only char-
acteristic length, the K’s are proportional to the force per unit thickness
times the inverse square root of crack length. The general conclusion
following from Eq 1 is that, to the extent linear elasticity is appropriate,
all crack tip stress fields are of identical functional form with the in-
fluence of the particular magnitude and method of loading, and geome-
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try of the cracked body, sensed in the crack tip region only through the
stress intensity factors Ky, Kiy , Kiix -

For Mode I (tensile) crack tip deformations, the f3;(6) are readily
identified from the equations [4] (with axes as in Fig. 1)

oy : 1 — sin (8/2) sin (39/2)"
oy | = Ki(22r) ™ cos (6/2) sin (8/2) cos (36/2) {...(2)
oy 1 + sin (6/2) sin (36/2)

700 = 7y, = 0, 0, = 0 (generalized plane stress)
o, = »(o. + o,) (plane strain, » is Poisson ratio)

and similar equations may be written for Modes II and III. The stresses
oy(x, 0), 754(x, 0), and 7,,(x, 0) represent the tractions acting (for
x > 0) in the y, x, and z directions along the prospective fracture surface.
For Mode I

oy(x, 0) = Ki(2rx)712, 754(x, 0) = O,
Ta(x, 0) = O (tensile) . ...(3a)
for Mode II
oy(x, 0) = 0, 74(x, 0) = Ku(2mrx)~12,
| 7.(X, 0) = O (in-plane shear) . . ..(3b)
and for Mode III
ay(%,0) = 0, 75(x, 0) =0,
T = Ki(Qex)™Y? (anti-plane shear) . . . .(3c)

For example, with remotely applied stresses and a crack of length 2a as
in Fig. 1,

KI.= (0))u(m@)?, Ky = (Tz4)p(ra)?, K = (Ta)(ma)!® ... . (4)

Other stress intensity factors for a wide variety of crack configurations,
including several typical experimental specimens, as well as an exhaustive
list of references to workers on elastic crack stress analyses, are cata-
loged in the paper by Paris and Sih [4].

Limiting attention to two-dimensional problems in homogeneous iso-
tropic materials, Muskhelishvili [5] has shown that for in-plane loadings
(Modes I and II) the stresses and displacements are expressible as



252 FATIGUE CRACK PROPAGATION

0y + oy = 0, + 0y = 4 Re {®({)}
oy — 0x + 2irey = € (o — o, + 2ire) = 2 [fO'(¢) + ¥(©)]

U, + ity = e+"0(ur + i) = Z——IG {Kf &(¢) di L .(5)

—@@Y—fﬂ@#}

where the equations are given in cartesian and polar form, the u’s are
displacement components, ®(¢) and ¢(¢) are analytic functions of the
complex variable { = x -+ iy, a bar over a quantity denotes its complex
conjugate, Re means real part, G is the shear modulus, and x = 3 = 4y
for plane strain and x = (3 — »)/(1 + ») for generalized plane stress.
All other stresses vanish except in the case of plane strain for which
o, = v(c; + o). Similarly, for anti-plane loadings (Mode I1T)

Tyz -[— l.Tzzr = e_w(TOz + i'rrz) = Q(g.)
............ (6)
m=%m%fMUW} ]

with all other stress and displacement components vanishing.
As an example, for the configuration of Fig. 1 with a umform remote
stress state, the complex stress potentials are [5]

B = 151(01)e — i(Tar)ul (2@ + 20702 + a — 1]
15102 + ()]

WE) = B — @) — (5 Q) + 1510 — (02)a] + {(Tar)

Q) = (rudut V25 4 20)7¢ + a) + i(ray).,

where &(¢)= &({) and the branch cut of {~U2(f + 2a)7/* is chosen
along the crack line so that the combination behaves as ! for large ¢.
That the stress intensity factors for this configuration are correctly given
by Eq 4 may be checked by computing the crack tip stresses from Eqgs
5 and 6 and comparing with the singular forms of Eqs 3 which serve to
define the stress intensity factors. Paris and Erdogan [6] have pointed
out the relation between the stress concentration factors popularized
by Neuber [/] and Irwin’s stress intensity factors. For an ellipse of length
2a and end radius of curvature p subjected to an in-plane tension (o)), ,
the maximum concentrated tensile stress is

omax = () [1 + 2(@/o) ). ... ... o (8a)

Similarly, the maximum concentrated shear stress due to an anti-plane
shear (r4.), is

(7
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Tmax = (Ty)oll + (@/e)2]. ... ... ... (8b)

Comparing these with Egs 4, for p < a (narrow ellipse) the maximum
concentrated stresses and stress intensity factors are related by

K; = Y(7p) %0max oot LEERRERE (8¢c)
in the tensile mode, and by
Kt = (@p) " onaxe oo (8d)

in the anti-plane shear mode. ,

To the extent that inelastic behavior is of no major influence, the
surrounding elastic crack tip stress fields are identical for two configura-
tions if their stress intensity factors are equal, and thus if material prop-
erties are identical, the stress and deformation distributions in the in-
elastic regions are presumably identical. This conclusion of elastic stress
analysis is of obvious importance; it embodies a large part of the progress

- V ic: = ~-1/2
o-y(x,g) Ve elastic O'y(X.O)-KI(z-irx)

\
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FIG. 3—Approximate calculation of plastic zone size.

of modern fracture mechanics. The deficiencies of purely elastic analysis
are equally clear, necessitating analyses based on more realistic material
models allowing for plastic flow. Quantitative estimates of when the
elastic singularity controls local deformations are needed and new pa-
rameters must be established as controlling these deformations when
plasticity is on a large enough scale to wipe out the characteristic sur-
rounding elastic field. The physical differences between plane strain and
plane stress states, very significant in the presence of plastic yielding, are
inadequately reflected in purely elastic treatments. Details of stress and
strain distributions in separation prone material at the crack tip ob-
viously require a plasticity treatment for reasonable descriptive accuracy.
Serious crack blunting can only result from large strains of plastic, not
elastic, magnitude. Finally, plastic deformations are history dependent
and elastic deformations are not of particular significance in fatigue
where separations result from nonmonotonic deformation histories.
Rough estimates of the scale of plasticity are obtainable from simple
manipulations based on the elastic stress field. Consider the tensile mode
as depicted in Fig. 3 and suppose that the plastic region, of linear di-
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mension w, is imbedded in the field of the elastic singularity. Let ¢, be an
effective yield stress, as modified by a degree of hardening or by hydro-
static stresses. As in Fig. 3, the yielded region should extend over roughly
twice (due to stress redistribution) the distance from thé crack tip at
which the dashed line singular elastic stress field equals the yield stress.
Then from Eq 3aq,

0, = oy(w/2,0) = KI(er/Z)_m; W= ... ... 9)

This estimate of plastic zone size is surprisingiy accurate for well con-

tained plasticity. Similar formulas follow for the shear modes with o,

replaced by 7, , a yield stress in shear. o
The plastic zone size (Eq 9) establishes a geometric dimension indi-
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FIG. 4—Small scale yielding near crack; crack may be viewed as semiinfinite
with inverse square root stresses approaches at large distances.

cating the region over which deviations from elastic behavior occur.
Now the characteristic length associated with the elastic stress field is a
dimension such as crack length, uncracked width of a finite specimen,
distance from crack tip to points of load application, and so forth. Thus
at load levels sufficiently low so that the plastic zone size computation
of Eq 9 gives a length small compared to all such dimensions, the plas-
ticity may be c%pected controlled by the elastic stress intensity factor.
We call this situation ‘“‘small scale yielding.” Conversely, when the length
predicted by Eq 9 is comparable to or greater than such geometric
dimensions, a correction to Eq 9 is required as the stress intensity factor
may no longer be expected to control the plasticity. These conclusions
are borne out in all the plasticity models examined subsequently. As
might be expected, the nonlinearity inherent in elastic-plastic analysis
causes considerable complexity in the determination of deformation
distributions even for the simplest of models. Since our interest is fre-
quently in situations of small scale yielding where the stress intensity
factor dominates, it is of interest to inquire as to whether simpler analyti-
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cal methods may be established valid only for this case and not for the
entire range of large scale yielding. A concept of a boundary layer ap-
proach has emerged in this connection in some recent work by the author
[7-10]. In the Iimit when plastic region dimensions are negligible com-
pared to geometric dimensions, the surrounding elastic singularity sets
the boundary conditions on the elastic-plastic boundary value problem,
in the sense that the plastically yielding material only ‘“‘sees” the sur-
rounding stress field through the inverse square root term in the elastic
solution, this stress field being approached by the ‘elastic-plastic solution
at distances large compared to the plastic zone size but still small com-
pared to other geometric dimensions. Thus the small scale yielding
solution for any loading (Fig. 4a) may be obtained by considering a
semi-infinite crack (Fig. 4b) with the asymptotic boundary conditions
that the inverse square root elastic stress field is approached at large
distances:

oii = K fii(0) as r— e (10)

Here K is the stress intensity factor pertaining to the particular manner
of loading and deformation mode.

" Letting &,(¢), ¥.(¢), and ©,(¢) denote the form of the complex stress
potentials when only the singular term is included,

K:

2(8) = 20(5) =,W,ﬂs(§) = 0, (tensile) . ............. (11a) -
d,(¢) = — %xbs(?) = — 2(;%151—&,93({) = 0, (in-plane shear)..(11b)
®,(¢) = ¢u¢) = 0,Q(¢) = Kur (antiiplane shear). ... ... (11¢)

@mg)rr’

where the crack tip is at { = 0 and the crack surface extends along the
negative real ¢ axis. The asymptotic boundary condition for small scale
yielding is equivalent to requiring that the complex potentials approach
the appropriate above form as | { | — .

Anti- Plane Shearing

The third mode of crack tip deformation, anti-plane shearing, is of
little practical importance as fatigue cracks generally tend to initiate
(if not already present) through an in-plane shearing mode involving
repeated deformation in slip bands [/1,12], and to propagate in a tensile
mode. The motivation for dealing with this case is primarily the lack of
comparable progress in the analysis of the tensile mode. Exact mathe-
matical solutions are now available for the anti-plane shearing of cracks
in perfectly plastic materials, including both plastically isotropic (Tresca
or Mises yield condition [13] governing) and anisotropic (including the
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special case of single crystals with discrete slip directions) materials,
and for work hardening materials with arbitrary relations between
principal shear stress and shear strain in the work hardening range.
Attempts at drawing direct analogies between detailed features of anti-
plane shearing and tensile crack tip deformation fields appear largely
unjustified. However, the two cases share commonly the principal
features of load transmission around a traction free surface in materials
which will support limited stresses, and since Eqs 3, 4, and 8 predict
notable similarities in purely elastic response, one confidently expects
analogies between gross features of plasticity effects in the anti-plane
and tensile modes. Thus, for example, anti-plane predictions of the
dependence of plastic zone sizes and crack opening displacements on
applied loads and geometrical dimensions, as well as general conclusions
drawn from variations of the yield surface and introduction of hardening

o elastic -plastic
boundary

FIG. 5—Yielded region near crack in perfectly plastic Tresca or Mises material
subjected to anti-plane shearing.

behavior, are likely good approximations for the tensile case. McClin-
tock and Irwin [I4] have recently discussed this point.

Hult and McClintock [I5] gave the form of the stress and strain
distribution in the plastic region adjoining the crack tip for a perfectly
plastic material satisfying the Tresca or Mises yield condition (coinci-
dent in this case),

¥

that the principal shear stress not exceed the yield stress 7, . Referring
to Fig. 5, in the plastic zone :

Tz — To,Trz=O

_1du. _ . R(6) __ dus _

N R A " S .(12b)

0
D f R(p)dy
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where v, = 7,/G is the yield strain and R(#) is the radial distance to the

elastic-plastic boundary. The plastic zone size, », and crack opening dis-
placement, u, , are

T /2
= R(O)) Uy = U, l9=1r2,r=0 = Yo f R(())dﬁ ....... (126')
0

The small scale yielding solution for this case was first found by Hult and
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FIG. 6—Plastic zone size as a function of net section stress for various crack
length to width ratios; anti-plane shearing of perfectly plastic Tresca or Mises
material. .

McClintock [15] and further elaborated by Irwin and Koskmen [16] and
Rice [8]. The plastic zone is circular in shape with

R(8) = wCos f; w =

) ,
_ VoK _ Yol e o ee e e e e e (13b)

T2

U
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Shear stresses in the elastic region outside the circular plastic zone are
given by [8,16]

. K
Tyz ‘I‘ Tz = Q(() = [271_(( __II:)/Z)]lﬂ

Comparing with Eq 1le, the effect of plasticity is to shift the purely
elastic stress distribution ahead by half the plastic zone size.
For the crack of length 2a in an infinite body configuration of Fig. 1,
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FIG. 7—Crack opening displacement as a function of net section stress for
various crack length to width ratios; anti-plane shearing of perfectly plastic Tresca
or Mises material. _

loaded with a single remotely applied anti-plane shear stress (ry.),, = 7 ,
the plastic zone size and crack opening displacement are [8,15]

_J21+5 2s .
e aPLES (2 ) 0]

Uy = fyaa|:7%(1 + SHE(S) — 1:| .....(14b)
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where s = 7,/7, and E;, E, are complete elliptic integrals of the first
and second kind. Noting that Ky = 7.(wa)!/?, these may readily be
shown to reduce to the small scale yielding results of Eq 13a at low stress
levels. The shape of the plastic zone is initially circular and it elongates
much as in Fig. 5 at higher stress levels until at the limit load , = 7,
the zone extends to infinity in the x direction with a height in the y
direction approaching [8] asymptotically to' 4a/x. Koskinen [17] first
tieated the configuration of Fig. 1 for the case of a finite, rather than
infinite, width in the x direction. While his solution was based on a
numerical finite-difference scheme, Rice [8] later provided an analytic
solution. When the width is 2b and the crack is centrally located the
stress intensity factor is [{]

1/2
Ky = 1o(ma)'? l:%lc)_l tan (gg):l ............ (15a)

The same solution applies for an edge crack of length @ in a plane of
width b, or for double edge notches of depth @ in a plane of width 2b.
These configurations are only approximately equivalent in the tensile
case (for example, K; =~ 1.1 ¢, (7a)*? for an edge crack in an infinite
plane). The bracketed term of Eq 15a provides a good approximation,
which can be improved upon [4], to the finite width correction in the
tensile case. The graphs of Figs. 6 and 7 give dimensionless plots of the
plastic zone size and crack opening displacement for several crack length
to thickness ratios, a/b, in terms of the ratio of the ret section stress,
. = 1,(1 — a/b)™1, to the yield stress. Using Eqs 13a, 135, and 135aq,
the small scale yielding solution for which the stress intensity factor
dominates leads to

0= a(l - B) [2" tan(;Z):l (Tl)z .. (15b)

The dimensionless plastic zone size

(3
w \2b 2b
- T 7 N2
a a
(1-)
appears as a function of dimensionless net section stress, 7,/7, , in Fig. 6

for crack length to plane thickness ratios, a/b, of 0, 1/5, and 3/5. The
dimensionless crack opening displacement
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2)on(3)
U, \2b 2b
Yo a 2

(1-5)
appears as a function of the same parameters in Fig. 7. From Eq 155,
both of these dimensionless parameters equal the square of the net

A 7 V' ;/ij/ v’

V2ehe=0
«— ¢, —0Tyy

B Vﬁb":o

Y

o [s c(
elastic - plastic

yield
© surface boundary.
Agp
{b) -
A Yz LW__,f
I H
QHJ '
G K
QFH QJ]_ I

F o L QHJ

T FYH

Xz -QFH
G
(c) (d)

FIG. 8—(a and b) General formulation for anti-plane shearing of elastic per-
fectly plastic material with crack; (c and d) special features of solution when yield
surface contains straight line segments corresponding to restricted slip directions
(discrete slip lines’formed at crack tip).

section stress to yield stress ratic according to the small scale yielding
“solution, and this is shown by the dashed lines. The heavy lines are the
results of exact computations [8] which do not make the small scale
yielding approximation. The bracketed factor in the above two-dimen-
sionless expressions equals 1.00 for a/b = 0, 1.51 for a/b = 0.20, and
4.28 for a/b = 0.60, as indicated on the graphs.

Considering Fig. 6 first, pred1ct10n of the plastic zone size by the small
scale yielding solution (Eq 15b) is seen to be accurate up to 30 per cent
of the limit load (r,/7, = 1) for a/b = 0, up to 40 per cent for a/b =
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0.20, and up to 50 per cent for a/b = 0.60. At higher stress levels the
stress intensity factor is not even approximately descriptive of local
“conditions at the crack tip. It should be cautioned that these results
-are for monotonic loading only. As will be seen later, cyclic loadings as
for fatigue produce a smaller zone of cyclic plastic deformation for which
the same curves are valid but with 7,,/7, replaced by the cyclic variation
in net section stress divided by rwice the yield stress, so that the stress
intensity factor is descriptive of local cyclic conditions up to much
higher stress levels. The crack opening displacement (Fig. 7) is seen to
be accurately predicted by the small scale yielding formula (Eq 155)
up to much higher stress levels, with the stress intensity factor failing to
be descriptive of local conditions above about 60 to 70 per cent of the
limit load.

Rice [10] has recently generalized the procedures employed [8,15,17]
for obtaining the solutions discussed above, by formulating the anti-
plane shearing problem for perfectly plastic materials with yield surfaces
of arbitrary convex shape in the two-dimensional 7,,, 7,. shear stress
space (the Tresca or Mises yield condition (Eq 12a) then being the special
case of a circle of radius r, in-this space). The principal features of the
solution for an edge crack of depth a in an infinite body (or equivalently
the crack of length 2a in an infinite body configuration of Fig. 1), sub-
jected to a remotely applied anti-plane shear stress r., , are summarized
in Fig. 8. A yield surface appears in Fig. 8a, the cracked body in Fig.
8b. For the remotely applied stress in the direction shown, stresses in the
plastic zone correspond to points on the upper part (r,, > 0) of the
yield surface. When the yield surface contains no straight line segments
the stress components are constant along radial lines in the plastic zone,
so that along a line from the crack tip making an angle 6 with the x
axis the stresses have those values corresponding to the point on the
yield surface for which the tangent line makes the same angle § with the
75, axis. Strains exhibit a 1/r singularity at the crack tip, and the plastic
part of the strain has a direction perpendicular to the radial lines. The
elastic portion of the physical x, y plane may be shown [I0] to map
into the region of the stress plane between the r., axis and the upper
part of the yield surface, with corresponding points as labeled by the
capital letters in Figs. 8a and b. An inverse solution for physical co-
ordinates in the elastic region as a function of stress follows by intro-
ducing a potential function ¢, = ¢,(7zz, 7yz). Then

2 2
— gf;,y = +6¢0 , and V¢, = 9% +a¢° = 0...(16a)

0Tz, 72, aTzz

X =

and the harmonic function ¢, vanishes on the 7., axis and the upper part
of the yield surface, as in Fig. 8a. Along the 7,. axis from the origin out
to a stress distance equal to the remotely applied stress,
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FIG. 9—Small scale yielding solutions for anti-plane shearing of perfectly
plastic materials: (a) Tresca-Mises material, (b) orthogonal allowed slip directions
at 45 deg with crack line, and (c and Q) single allowed slip directions. :

do = —a Ty, 0 <rp < Typoioviinn. (16b)

The distance R from the crack tip to a point on the elastic plastic bound-
ary, corresponding to a given point on the yield surface, is found from
[10]

a ¢o
R
on

where 9¢,/(8n) is the derivative of ¢, in the direction normal to the yield
surface. A membrane analogy is readily established allowing effective
visualization of the solution; ¢, may be viewed as the deflection of a
membrane subjected to zero transverse pressure and stretched out over
an opening in a sheet corresponding to the region between the upper
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part of the yield surface and the 7., axis of Fig. 8a. According to Eq 165,
the membrane is loaded by bringing a thin wire of length corresponding
to 7, into contact with the membrane along the 7,, axis, such that the
wire has a downward slope corresponding to crack length a. Equation
16¢ then indicates that the distance R to a point on the elastic plastic
boundary corresponds to the slope of the membrane in the direction
normal to its fixed boundary. Thus, for example, it is readily understood
that as the remotely applied stress is increased toward the limit load,
- the plastic zone tends to elongate in a direction corresponding to the
yield surface tangent at the point where the yield surface intersects the
Ty. AXIS.

When the yield surface contains straight line segments, as in Fig. 8¢,
the above formulation of Eqs 16 remains valid, but it is now meaning-
less to speak of plastic strains as the plastic zone coalesces into discrete
slip lines across which the anti-plane displacement %, has a discontinuous
jump. As in Figs. 8¢ and d, a discrete slip line emanating from the
crack tip corresponds to each straight line segment of the yield surface;
a continuous field of plastic strain joins separate discrete slip lines when
a corner of the yield surface is rounded as at point H of Fig. 8¢. Straight
line segments on the yield surface result when only certain directions
of plastic shearing are allowable, as in a single crystal or for events on
the scale of a single grain rather than a polycrystalline aggregate. The
allowed slip surfaces have the direction of the straight line segment, and
the perpendicular stress distance from the origin of the stress plane to
the straight line segment is the resolved shear stress required for slip.
Studies are currently underway on the relevance of similar conclusions
for the tensile deformation of materials with restricted slip directions.

Figure 9 pictures four yield surfaces and the corresponding plastic
zones obtained by Rice [I0] in a solution method developed for small
scale yielding. The plastic zone dimension, w, and crack opening dis-
placement, u, , have already been given in Eqs 13 for the circular Tresca-
Mises criterion of Fig. 9a. For the diamond-shaped yield surface of
Fig. 9b, corresponding to slip under a resolved shear stress 7, on planes
inclined at 45 deg with the crack line, plastic zone size (slip line length)
and crack opening displacement are [I0]

)\2 = 3 '\/5 12 KIII KIII
w = gr(\/3 -1 [2(2 \/3)] — R 0322 = ]

MK y e
¥ ~ - |
= TR 0916 Yow

27T,

where A &~ 1.8541 is the complete elliptic integral of the first kind with
modulus 4. Allowable slip surfaces are parallel to the crack surface in
Fig. 9¢; in thls case
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Similarly, for allowable slip surfaces perpendicular to the crack surface
as in Fig. 94, :
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FIG. 10—(a and b) Elastic-work hardening plastic anti-plane shear stress-
strain relation, and (c) polar strain co-ordindgte system (v is magnitude of strain
vector, ¢ is angle between strain vector and y axis).

_ WK%II ~ K%n
w = m ~ 0-196 7'02
i . ... .70
_ YolA1xx _ ~ L
Uy = y - Yo 1272 v,w J

Comparing these last three results and Eq 13a, the particular shape of the
yield surface is seen not to be of great influence in determining the extent
of plasticity, in spite of the radically different plastic zones formed.
Neuber [/8] first pointed out the possibility of obtaining anti-plane
shear stress distributions in materials with nonlinear stress-strain rela-
tions of the elastic work-hardening plastic type. His results were limited
to the ‘“‘small scale yielding” case, in our present terminology, although
this has unfortunately not been realized by some investigators (see the
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subsequent discussion on stress concentrations due to smooth ended
notches). Rice [9] provided a hardening anti-plane shear solution for
sharp edge notches, including the finite crack configuration of Fig. 1
as a special case, through a procedure valid so long as the remotely
applied shear stress 7., does not exceed the initial yield stress 7, , which
marks the onset of plastic flow. These solutions are of the deformation
plasticity type (that is, indistinguishable from nonlinear elastic solutions)
rather than the physically appropriate incremental type. The principal
shear stress and principal shear strain,

CRACK

FIG. 11—Geometry of small scale yielding near a crack tip for arbitrary
relation between anti-plane shear stress and strain in the work hardening range.

= (12, + Ty)12, vo= (o a2 (18a)
are assumed uniquely related to one another by |
=Gy for v < v, = 7,/G; 7 = 7(y) for v > ~,....(18b)

where 7 = 7(y) is the equation of the plastic portion of the stress strain
curve (Fig. 10a). Component forms of the stress strain relations are

equivalent to assuming that the stress and strain vectors are colinear
(Fig. 10b).
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A polar strain coordinate system is employed (Fig. 10c) where v is the
magnitude of the strain vector and ¢ the angle between the strain vector
and the y axis. Much as in the perfectly plastic case, physical coordinates
x and y are related to derivatives of a potcntlal function ¢ = Y(y, ¢)
by [9,18]

. Y  cos ¢ Y oy _ sin ¢ ayY 1
x = Sln¢67 e %,y—coub By " c,}qb....( 9a).
anti-plane displacements are
B (198)

The potential function satisfies

o) oy 1oy 1oy o (19¢)
yr'(y) 8v* vy dy  yEa¢? '
and appropriate boundary conditions may be set [9] as suggested by the
labeling of Fig. 10c.
The small scale yielding solution views the crack as semi-infinife and
imposes boundary conditions that the elastic inverse square root sin-
gularity (Eq llc) be approached at large distances. In this case for

v > v, (that is, for points in the plastic zone) the potential function is
[9,18]

Yot | i _du

To Y LY ulr (u)
A geometrical interpretation of this solutlon is g1ven in Flg 11. Upon
~“introducing the functions of strain- - : _

_ K%n ® du YoTo 1]
x(y) = = {2707'0'/; 21 () — ’YT(’Y)J,I}

R(y) = Kin
2772 y7(y)

physical coordinates are related to the strain vector and its orientation by

= X(y) + R(y) cos 2¢, y = R(y)sin2¢...... (21b)

As in Fig. 11, these require that lines of constant strain v in the plastic
region be circles of radius R(y) with center a distance X(v). ahead of the
crack tip. The direction angle ¢ of the strain vector at any point on a
constant strain circle is one half the angle made with the x axis by a line
from the center of the circle to that point. Similarly, the elastic-plastic
boundary is a circle with center at X(y,) and radius R(y,) = Kin/(2r72);
this radius is independent of the form of the work hardening stress strain
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curve. The plastic zone extends a distance R(y,) + X(y,) ahead of the
crack tip and R(y,) — X(y,) behind the crack tip. From Eq 215, since
¢ = 0 on the line in front of the crack, distance x from the crack tip
and strain v,,(x, 0) are related by

‘YoKIII f ' du

TTo  Juyu(x0) Ui (1)

X = (vye(%,0) > vo). ... .. (22)

Stresses in the elastic region outside the circular plastic zone are given by

Kin
(27 — X(yo) 1312 77

so that, as noted earlier for the special case of perfect plasticity, the effect
of yielding is to- shift the elastic singularity stress distribution ahead a
distance equal to that between the crack tip and center of the plastic
zone. Lines of constant strain v in the elastic region remain circular, but
not concentric with the elastic plastic boundary (Fig. 11).

As an example, for a stress-strain relation following a power law

Tyz + Tz = Q(() =

T = Ta('y/"yo)N (Y >Y0)e oo (24)
in the work hardening range,
R(y) = | +NX( ) _K‘“ Cro/y ) (25a)

Thus the plastic zone extends a distance -

\ 2 V
0= R(y) + X(y) = — K (25b)

ahead of the crack tip, and on the line ahead of the crack in the plastic'
region (Eq 22)

K%II 1/(1+N)
w0 = [

K%II N/(1+N)
Tzlz(x) O) = To [m] ........... (2561)

When the small scale yielding approximation is inappropriate, the
solution for the potential function ¢ (from which physical coordinates
are obtained by Eq 19a) in the plastic region (y > v,) takes the form
9]

Yond) = 2 Dufuy) sin[0n = Dol (> 7). (26

Here the set of functions f,(y), n = 1, 2, 3, -.- | satisfy the ordinary
differential equations
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The set of coefficients D, has been determined [9] for the edge crack
configuration of Fig. 10c when the remotely applied stress is below the
initial yield stress; they are linear in crack length and rather complicated
functions of the form of the hardening stress-strain curve and the ratio
of remotely applied stress to initial yield stress. Extensive numerical
tabulations of the coefficients D, have been published 9] for materials
hardening according to the power law of Eq 24. Figures 12 and 13 show
some of the final results in graphical form. In Fig. 12 the hardening

b w T | S
o

2.50}
N=0 (perfectly plastic)
i N=O.1
2.00- N=0.3
N =10 (linear elastic)
1.50

B S VYV T

|.00’— a w

DIMENSIONLESS PLASTIC ZONE SIZE

0.50F
i T,/T
0.00 L1 ‘ Loy
0.0 0.2 0.4. 0.6 0.8 1.0

REMOTELY APPLIED STRESS / INITIAL YIELD STRESS

FIG. 14—Plastic zone dimension as a function of net section stress and harden- .
ing exponent; anti-plane shear of material following = 7o (v/~0)* in plastic range.

exponent is N = 0.1; the position of the elastic plastic boundary (lower
right quartile of figure) and strain distribution in the plastic region
ahead of the crack tip (upper right quartile) are shown for 7, = 0.6 7,
and 7,, = 0.8 r,. These remotely applied stress levels were chosen for
illustration as they nicely typify the transition from the circular plastic
zones of small scale yielding to the highly elongated plastic zone extending
out to infinity as the remotely applied stress approaches the initial yield
‘stress. The same results are graphed in Fig. 13 for a higher hardenmg
exponent of N = 0.3.

The variation of plastic zone dimension » with applied stress and
hardening exponent N is shown in Fig. 14 for the edge crack of depth a
in an infinite body of material hardening according to the power law of
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Eq 24. At low stress levels the small scale yielding Eq 256 applies,
with Kyy = 7,(wa)!2 Significant deviations occur above about 30 per
cent of the initial yield stress, the range for which the curves are drawn.
The curve labeled N = 0 corresponds to perfect plasticity, and is simply
Eq 14a. The other extreme, N = 1.0, corresponds to linear elastic be-
havior. Here the plastic zone dimension was computed directly from the
elastic solution of Eq 7 by setting w equal to the distance ahead of the
crack tip at which 7,,(x, 0) = 7,, resulting in

w=afll — (r/r) " — 1} (N=10)........(27)

It is Qf‘ interest to note that the relatively high hardening exponent of
N = 0.3 gives a result about as close to the linear elastic prediction as
to the perfectly plastic.

y stress free notch surface
) {r/ (stress trajectory of crack solution)
—\/

é’p Ymax® Moximum concentrated strain
crack \ % x‘=
_//

X(ymax)-'J [+
— = R{Ymax)

FIG. 15—The anti-plane solution for a crack or sharp notch also provides a
solution for a family of smooth ended notches.

Neuber [I8] has indicated that an anti-plane stress distribution for a
crack or sharp ended notch also provides the stress distribution for a
family of smooth ended notches. The stress free boundary condition is
that the stress vector be tangent to the boundary. Thus the family of
stress trajectories for, say, the crack solution is the family of correspond-
ing smooth ended notches. From Eqgs 194, x and y are known as a
function of v and ¢. Thus the stress trajectory equation (see Fig. 15)

dx +tangpdy =0.................. (28a)

becomes a differential equation for y as a function of ¢ along a trajectory.
Inserting initial conditions ¥y = +ymax (Maximum strain, occurring at
notch tip) when ¢ = 0, y is determined as a function of ¢ and thus the
x and y coordinates of points on the notch surface are determined as a
function of ¢. Upon solving for the radius of curvature p at the notch
tip, one finds after some computations that
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v 1 a¢i|
—_ . 28b
. l:a'ya(;b Y 6¢ =0, Y=Ymax ( )

For the small scale yielding solution, this turns out to be (Fig. 15)

2
Kir1 YoTo

7”'02 YmaxT (’Ymax)

p = 2R ('Vmax) =

Thus, defining 7max = T(¥Ymex) as.the maximum concentrated strain, one
finds Neuber’s result [/8] that for the family of smooth ended notches
generated in the way described above and having the same root radius
of curvature, the product of the maximum concentrated stress and
strain is a constant independent of the stress-strain curve:
K2 ' . .
VmaxTmax = s e (29)
7Gp
Equivalently, the product of the stress and strain concentration factors
has the same value as for the linear elastic case. Neuber unfortunately

o
lllll o, (yield streSS)x

T ]

FIG. 16—The -eﬁect of yielding is viewed as yield level stresses restfaining an
extended portion of the crack surface.

failed to adequately emphasize the restriction of his result to what is
here called the small scale yielding case; some investigators [/9,20]
have attempted to employ this result in the net section yielding range
where it is incorrect. Rhee and McClintock [2/] have pointed out that
in the perfectly plastic case the family of stress free boundaries are circu-
lar arcs in the plastic region and

YmaxTmax = ('yo 9) D (30a)
p

Were the Neuber result to hold at all stress levels, » would have to be
given always by the small scale yielding expression. We see from Fig. 6
that this is not the case, and indeed at 80 per cent of the limit stress
Neuber’s result (Eq 295) is incorrect by a factor of about three for the -
edge notch in an infinite body. More generally, employing the solution
of Eq 26a valid also at high stress levels, Eq 285 leads to

I fn(vm)} ..... (30b)

max

o

p = Z (272 — I)D‘n |:f;bl ('Yma.x) -

n=l1

for the relation between root radius and maximum concentrated strain.
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Discrete Surfaces of Slip or Tensile Yielding

Several authors have proposed approximate treatments of crack tip
plasticity based on a supposition that plastic flow is adequately modelled
as either slip or tensile yielding on discrete surfaces emanating from the
crack tip. Barenblatt [22] first considered models of this type, although
his original application was to the influence of molecular “cohesive’”
forces on the form of deformation near a crack tip in brittle materials.
Later Dugdale [23] replaced the cohesive forces of the Barenblatt theory
with yield level stresses restraining the crack opening over an extended
portion of the crack surface equal to the plastic zone dimension. Bilby,
Cottrell, and Swinden [24] examined the same model but approached the
mathematical problem from the point of view of a continuous array of
dislocations distributed on a plane containing the crack and its yield
zone. Further studies of models based on discrete surfaces of slip or
tensile yielding have been made by Goodier and Field [25], Field [26],
Smith [27], Rice [7], Keer and Mura [28], and Hahn and Rosenfield
[29]. '

Figure 16 pictures the basic idea for the case of a discrete surface of
tensile yielding ahead of the crack, as appropriate for the tensile mode.
The influence of yielding is viewed as effectively extending the crack a
distance w ahead of its tip, with yield level stresses o, acting to restrain
the extended crack surfaces. The computation is then entirely elastic, and
the plastic zone size is determined as that length « ‘which makes the
stresses bounded at the outer tip of the plastic zone. For the tensile
mode, the small scale yielding solution which asymptotically approaches
the crack tip elastic singularity leads to [7]

T K12 - KI2

©=%,7 0.392 2

The complex potentials from which stresses and displacements may be
computed (Eq 5) are

?() = Tarctan [(t - w)m]l ............ (316)

() = @' () J
taking the branch cut along the crack line and plastic region,
— o < x < w. Displacements u,(x, 0) of the extended crack surface
in the plastic zone are given by [7]

s , 1+»1—§1/2
%, (1 _ g)/ B lxlog{l - EI B glﬂl,,(?,lc)

1y (%, 0 = 3=

0<x < wy
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and the crack opening displacement %,(0, 0) = u, is

_ k+ Dow  (k+ DK
U, = e ‘-- T6Go. (31d)

Here displacements are measured from zero along the crack line so that
2u,(x, 0) is the total displacement between the upper and lower crack
surfaces.

Similar results follow from the small scale yiclding solution for in-
plane shear. Replacing the tensile yield stress o, in Flg 16 by a shear
yield stress 7, , the plastic zone size is

2
o= Kz R (32q)

An equation identical to Eq 31c¢ results for the sliding displacement
u,(x, 0) in the plastic region, with ¢, replaced by 7, and w as above.
The crack opening displacement u,(0, 0) = u, is

4+ Drw _ (k+ DK
U, = G = 8Gr (32b)
Similarly for the case of anti-plane shear [7],
T Kiu
w = § 7—02 ...................... (330)

The sliding displacements u.(x, 0) in the plé,stic zone are again given by

an equation identical to Eq 31¢, but with the factor outside the bracket

replaced by 4r,0/7G, and the crack opening displacement #,(0, 0) = u,
is

= 2T ol KIII

? =G~ 4Gr,

This solution is, of course, identical to that of Eqs 17 resulting from
the highly anisotropic anti-plane shear yield surface of Fig. 9c. It is seen
that anti-plane shear results, in this case, are also correct for in-plane
shear if 1/G is replaced by (« -+ 1)/4G in the displacement formulae.

At high stress levels the small scale yielding solution is no longer
useful and recourse must be made to complete solutions. For the finite
crack of length 2a configuration of Fig. 1, subjected to a remotely applied
tensile stress (¢,), = o, the resultlng plastic zone size for discrete
planes of tensile yielding at the ends of the crack is [13-25]

w=a I:sec (;::) — 1:| ................ (34a)

Identical formulas apply for in-plane or anti-plane shearing, with
../ 0, replaced by 7,/7, . The complex stress potentials (Eq 5) arg
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.. (34b)

: 1/2 1/2

o -zl (2 ) () ()] 7
T {— w ¢+ 2a 4+ o a

|

\If@ = —¢@' () +% |

For in-plane shear, o, is replaced by —ir, in the expression for &(¢)
and the constant is replaced by +ir, /2, and ¥(¢) = —2&) — &' (¢)
+ ir,, . The complex potential Q({) for the anti-plane shear case is identi-
cal to the above expression for ®(¢), but with s, replaced by 27, and the
constant dropped. The crack opening displacement #,(0, 0) = u, is

A
J P '
a CL
2 300+
(»]
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FIG. 17—Plastic zone size and crack opening displacement as a function of
applied stress; Discrete surfaces of tensile yielding at crack tips.

_ (k+ Do P . (k + Daooa [ (1ro‘«;>i|
Uy = Wleg <1 + ?1) = ——é—;(—;———log sec 3 )| (34¢)

Again, the same expression applies for in-plane or anti-plane shear with
1/G replacing (x + 1)/4G in the latter case.

The plastic zone size and crack opening displacement given by the
above expressions are graphed as a function of applied stress in Fig. 17.
These appear in the dimensionless forms
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w and - 27Gu,
a (k + Dooa

both of which equal (#2/8) (s,/0,)? according to the small scale yielding
solution of Eqs 3la and d upon noting that K; = o (7a)'? in this
case. The solid lines of Fig. 17 are Eqs 34a and ¢ above; the dashed
line is the result of the small scale yielding solution. As is similar to the
anti-plane shear case of Figs. 6 and 7, the surrounding elastic singularity
controls the plastic zone size up to about 30 to 40 per cent of the limit
load, and the crack opening displacement up to about 40 to 50 per cent
of the limit load.

The discrete surface of tensile yielding models for finite width planes
with single edge, double edge, or central cracks are solved approximately
by cutting appropriate segments from an infinite array of identical colin-

EERRAREEEREEEE

2b 2b — [*— b~
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FI1G. 18—The infinite colinear array of identical cracks provides an approxi-

mate solution of the discrete surfaces of tensile yielding models for the double
edge cracks, central crack, and single edge crack configurations. :
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ear cracks, as in Fig. 18. The plastic zone size for this approximation

is [27]
2b . . wa TO o
w=a {Ez arc sin [sm (2_b) sec <E>j| — 1} ...... (35a)

and the crack opening displacement is given by the integral

_ (k+ 1Dobsina T2 CoS vy
Ho = 22°G fy 0= i & s W5 108
[Sm("—J”‘)] dn. . (35b)
sin (A — u)

where ¢ = 7(a + »)/(2b) and p = (1 — ¢_/0,)r/2. Numerical results
have been given by Bilby and Swinden [30]. Noting that the stress
intensity factor is

‘ : 1/2
Ky = 6w(ma)'” I:i_zbz tan (;—Z):| ............ (350)
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for the infinite array, these results may be shown to reduce to the small
scale yielding solution at low stress levels. The plasticity models for the
single edge, double edge, and central crack configurations, as based on
the infinite array, are likely accurate to about the same order that the elas-
tic stress intensity factors are given by the infinite array expression (Eq
35¢). From the discussion of Paris and Sih [4], the approximation would
be best for short central cracks and worse for single edge cracks due to
bending in the latter case. In fact, the limit load is even given incorrectly
in the single edge crack case as some compressive yielding must
occur to offset the bending induced by the lack of symmetry. Smith
[27] has discussed the discrete surfaces of yielding model for other
configurations involving more than one crack; Rice [7] has given general
methods through which plasticity solutions may be determined directly

/
=

/

(a)

FIG. 19—Plane stress plasticity in thin sheet may be modeled as discrete
surface of tensile yielding at crack tip: (a) two 45 deg slip bands ahead of crack and
(b) fully developed 45 deg shear lip crack with one slip band.

from known elastic solutions for single cracks in infinite bodies, and has
given the detailed solution for wedge forces on a crack surface.

Hahn and Rosenfield [29] have discussed the particular relevance of
the discrete surface of tensile yielding model for plane stress plasticity.
As in Fig. 19a, plastic flow ahead of flat through-the-thickness cracks
in thin sheets tends to consist of two intersecting 45-deg shear bands.
The plasticity is then localized to a narrow region of height roughly
equal to the sheet thickness. Presumably for an inclined 45-deg crack
(Fig. 19b) as may occur after a plane stress transition in fatigue, a single
narrow 45-deg shear band would appear ahead of the crack. The average
plastic extensional strain, &,°, would equal 2u,(x, 0)/¢ in either case,
where ¢ is the sheet thickness and u,(x, 0) the displacements calculated
from the discrete surface of tensile yielding model. A plane stress analysis
based on digital computer solutions of the governing elastic-plastic
equations has recently been presented by Swedlow, Williams, and
Yang [36]. While their formulation was two-dimensional and thus
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naturally does not reflect the inclined 45-deg shear band patterns ob-
served in steels [29,37], their techniques show the promise. of highly
accurate numerical solutions to configurations such as cracked bodies
exhibiting stcep stress and strain gradients. Details of the deformation
very near the crack tip remain obscure. Approx1mate methods of
determining the plane stress distributions near cracks, based on photo-
elastic analyses, have been proposed by Dixon and Strannigan [38].
Keer and Mura [28] treated the penny shaped crack of radius g in an
infinite solid subjected to the uniform remote tension o, , employing the
mode] of a discrete annular surface of tensile yleldmg surroundmg the
crack. In this case the plastic zone size is given by :

w0 =afll = (ou/o T — 1} ... ... .(3'6a)

- and the crack opening displacement -by

D
<%
X

FIG. 20—Discrete in-plane slzp lines near crack under tenszon, plane strain
mode of yleldzng

_ 2(1 — ) oow _.2(1 - v)o-,,a{
h = TG(I + w/a) - G

It is of interest to note that for the penny shaped crack, the crack open-
ing displacement approaches a finite limit as the remotely applied stress
approaches the limit value, o, = o,. Since Ky = 20, (a/x)V2 for the
penny shaped crack [4], both « and u, may being shown tajtake the forin
of the small scale yielding results (Eqs 31a and d): at low str&ss levels

“ (provided the plane strain value of x = 3 — 4» is chosen), evén: though
these were derived for the planar case.

A model for tensile deformation near a crack tip, by in-plane. shdlrig
on two discrete slip surfaces inclined at angles 4-6 with the crack line, is
pictured in Fig. 20. As has been seen in the last section, such plasticity
distributions constitute an exact solution for anti-plane shearing off ma-
terials with single crystalline yield surfaces. Whether analogous restlts
occur in the tensile case is currently unknown; however, such:discrete

-slip models may be useful in determining gross features of plane strain
yielding, just as the discrete surface of tensile yielding is useful for the
plane stress situations. An exact method of solution would be to deter-
mine the stresses due to the application of external loads and yield level

1 — 1~ (am/a,,) 7 (365)
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shear stresses 7, along the slip lines, imposing also the condition of zero
normal displacement discontinuity, and then to choose the slip line
length so that stresses are bounded at the outer tips of the slip lines.
The mathematical difficulties are considerable and therefore an approxi-
mate solution is given based on the in-plane shear results of Eqs 32a
and b.

Employing the singular terms of the complex potentials (Eq 11a) and
Eqgs 5, the elastic singularity gives the shear stress

10 = LKy sin 6 cos (6/2) Qar) 2. ... L. (37a)

along the prospective slip line. Now Eq 324 gives the slip line length
required to relax a shear stress Ki(27r)~1/2, It is plausible to assume that
the inclined slip line length in Fig. 20 required to relax the shear stress of
Eq 37a is given approximately by the same expression, but with K re-
placed by 14K; sin 6 cos (6/2). Thus

_, mK¢ sin’ @ cos” (8/2) :
W~ 321_02 ...............

is the length of a slip line inclined at angle 6. It is also plausible to assume
that each slip line produces a total slip displacement jump twice the
crack opening displacement given by Eq 32b (recall that for a slip line
ahead of the crack, the opening displacement is one half the total dis-
placement discontinuity), so that the slip opening displacement u, pro-
duced by sliding along each of the two slip lines is given approximately
by

e+ Drw  (k + 1)Ky’ sin® 6 cos” (6/2)
~ G ~ 32GT0 ...... (37C)

While these approximations may appear somewhat arbitrary, it is in-
teresting to note that should results for a slip line ahead of the crack be
similarly employed to approximate the inclined slip line cases in anti-
plane shear, the plastic zone size and opening displacement of Eqs
17¢ for the 90-deg slip lines (Fig. 9d) would be given exactly, and for
the 45-deg slip lines (Fig. 95) the zone size and opening displacement of
Eqgs 17a would be given to within the errors of about 4 and 40 per cent,
respectively.

If 6 is taken as 90 deg in the above equations, the yield stress in shear
set equal to one half the yield stress in tension and the plane strain value
of « chosen with a Poisson ratio of 0.3, one obtains for plane strain
conditions

U,

K 2 | K 2 .
o~ 0.196 —%, 4, & 0.225 =X (plane strain) . ... .... (38a)
002 EO'D

Here E = 2(1 + »)G is Young’s modulus. The values when 8 = 45 deg
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are about 15 per cent lower. For comparison, using Eqs 3la and ‘d
as descriptive of plane stress conditions, .
K

o)
002

K
Eo,
These results suggest that in the small scale yielding range, the maximum

plastic zone dimension and crack opening displacement are roughly half
as large for plane strain conditions as compared to plane stress condi-

w 2 0.392 u, =~ 0.500 (plane stress). ... ... (38b)

ELASTIC—PLASTIC BOUNDARY

' FIG. 21—Slip line field immersed in plane strain plastic zone surrounding
crack tip; constant stress regions joined by centered fans.

tions. Another approach to plane strain yielding is considered in the
next section. While one generally anticipates that plane strain- plastic
yielding will produce a “spread out” plastic region, a discrete slip line
‘model may be particularly appropriate for unstable materials exhibiting
upper and lower yield points. :

Plane Strain Slip Line Field

While models based on discrete surfaces of slip or tensile yielding give
at best gross features of tensile plasticity, some of the detailed features
of plane strain yielding can be studied through recourse to the slip line
theory [13,31]. F. A. McClintock has recently shown the author some
yet unpublished experimental results on yielding in doubly edge notched
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steel bars. Long bars with side grooves were compressed and later sec-
tioned in the center where plane strain conditions should prevail.
Etching revealed that the plastic region completely surrounded the crack
tip, much as in Fig. 21. At what appears to be a transition to limit
conditions at high stress levels, a few discrete slip lines inclined at
roughly 45 deg to the crack line (as in Fig. 20 with § = 45 deg) shoot
out from the smooth plastic region of Fig. 21.

The plane strain plastic slip line theory is exact only when Poisson’s
ratio is 14 or when plastic strains are much larger than elastic strains
[31]. Neither of these conditions are met exactly; nevertheless, we pro-
ceed to examine the stress and strain distribution near the crack tip on
the basis of this theory. The stress free boundary conditions on the
crack surface determine the entire stress fields in the largest isosceles
right triangles, labeled A4 in Fig. 21, which may be fit in the plastic zone.
The stresses are constant in regions 4 and

0o =00, 0y=r1sy =0 (region d)........ (39a)

Now any slip line emanating in region A4, and finding its way to the line
in front of the crack, must cross that line at 45 deg. Thus, the same
hydrostatic stress buildup [I3] occurs on each slip line, so that stresses
are constant on the line ahead of the crack. Therefore, another constant
stress region C is determined ahead of the crack, and in this region

s =§%> oy = (1 + ’21) 6oy  To =0  (region C)...(39b)
7s,/2 being the hydrostatic stress buildup in excess of the tensile yield
strength. Centered fans, regions B of Fig. 21, must join such constant
state regions, and employing polar coordinates the stresses in the upper
fan are [13] .

o (region B)...(39¢)

| —

o = 09_=%(1 -I—zz-r)ao — 00y, To = To =

Making the assumption of incompressible elastic bebavior (» = 13),
strain and displacement distribution in the slip line net may be worked
out in terms of displacements on the outer boundary of the three regions.
Once the normal displacements u, are specified at each point of the outer
boundary, the interior strain and displacement fields are determined.
Alternately, such a slip line net permits the arbitrary specification of
only the normal displacements. Letting u,s(s) be displacements in the
normal direction on the boundary of region C, with s measured as shown
in Fig. 21, employing symmetry restrictions and following the treat-
ment of Prager and Hodge [13], displacements in region C are
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where w, is the radius of the centered fans. Dlﬁ'erentlatmg to obtain
strains,

& = —€ = %[u;c ( x\;zy) T u”c( x\}_fy[l .. (40b)

'Ya:y=0

. (40a)

Setting y -l—-;O, the strain ¢,(x,0) along the line ahead of the crack is
&(x,0) = (s — X/NVD).. . . ... e (40¢)

The extensional strain at distance x ahead of the crack tip is the deriva-
tive of normal displacement with respect to arc length on the outer
boundary evaluated at s = w, — x/4/2. Note that no singularity occurs
as the crack tip is approached along the line ahead of the crack. Letting
u.p(f) be normal displacements along the outer boundary of the cen-
tered fans and imposing continuity conditions along the common
boundary of B and C, displacements in the fan region B are

U, = unB(B)
R SR (41a)
to= — [ tna9) b — wnes, — )
LYCE
The corresponding strain field in the centered fan is
& =¢ =0
if, |
v = L a0) 4 [ sanl9) dy + ol =) | (410)

+ u:zc(wa - I‘)

Just as in the anti-plane shear case, the centered fan focuses a 1/r shear
strain singularity into the crack tip; but now the focusing is from above
and below rather than from in front of the crack tip.

While the general features of the plane strain yielding are qualitatively
clear, further work remains to be done before quantitative results are
developed. Studies are currently underway on the matching of a slip
line net with the surrounding elastic field so that the dimension w, and
normal displacements of the outer boundary may be estimated. Several
questions remain. The assumption of elastic incompressibility is un-
realistic, and since plastic strains are clearly not enormous in comparison
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to elastic strains in regions 4 and C, some perturbation of the above
solution will occur due to plastic flow in the z direction. Further, it is
presently unclear as to whether the slip line net of Fig. 21 occupies a
major portion of the plastic region or a small fraction, and also as to
whether the discrete slip lines alluded to earlier constitute simply a
transition to large scale yielding or an intrinsic part of the yielding even
at low stress levels.

The large stresses generated in front of a crack under plane strain con-
ditions likely extend to high applied stress levels, the regime in which
yielding is controlled by the elastic singularity. This would be consistent
with the greater success of elastic fracture mechanics for plane strain
failures [/4]. Judging from the limit analysis solutions summarized by
Drucker [32] and McClintock [33], at applied stress levels causing net
section yielding the stress and strain distributions near the crack tip are
strongly dependent on geometry; the double edge notch configuration
permits the persistence of hydrostatic stress buildup, whereas the single
edge notch and central configurations do not.

Part I Mechanics of Fatigue Crack Propagation

The elastic-plastic mechanics developed in Part I is applied to fatigue
crack propagation in this part of the paper. Solutions of the various
models for unloading and cyclic loadings are given, and parameters
which may rationally be expected important in fatigue crack propagation
are identified. Theories of crack growth, seeking to relate cyclic crack
tip plasticity to microstructural “damage’” accumulation and material

-separation, are critically surveyed in the light of experimental results
and general consistency with the elastic-plastic analyses.

%

Elastic- Plastic Response to Cyclic Loadings

All of the elastic-perfectly plastic models discussed in Part I have the
common feature of involving proportional plastic flow; components of
the plastic strain tensor (or displacement discontinuity components
where discrete surfaces of slip or yielding are involved) remain in con-
stant proportion to one another at each point of the plastic region. This
permits a general treatment of the response to unloading, reloading, and
cyclic loading through the plastic” superposition method developed in
special cases by Hult and McClintock [15] and Rice [7]. Undoubtedly,
the persistence of proportional flow is much more a commentary on
our mathematical ingenuity than on the physical situation. Compressi-
bility effects in plane strain yielding as well as the transition from in-plane
deformation to inclined 45-deg shear bands in plane stress yielding con-
stitute deviations from proportional flow; these may, nevertheless, be
expected .insignificant for large planc strains and well developed plane
stress yielding.
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Suppose a cracked body is loaded by a system of stresses proportional
to some parameter L, and that the loading parameter is reduced by an
amount AL to a lower level L — AL. To the extent that crack tip rounding
by plastic deformation is neglected, the stress concentration factor is
effectively infinite, and reverse plastic flow commences with the first
increment of load reduction, creating a new plastic zone of reversed:
deformation imbedded in the plastic zone accompanying the original

y,
T b -a

b 0y (x,0) ‘o A oy(x,0)

*\ - w*‘L

(b}

reversed flow plastic zone

/monoionic plastic zone- .

<\ X

MZV -
o, |

{c)

FIG. 22—Plastic superposition for unloading. Adding (b) for load —AL with
a doubled yield stress to (a) gives the solution (c) resulting after unloading from
L 70 L-AL. Reloading, L-AL to L, restores (a).

loading (Fig. 22). When flow is proportional, the effect of unloading is
to reverse the direction of stresses in the reversed flow region, without
otherwise affecting their magnitude or distribution. The changes in
stresses, strains, and displacements due to load reduction are then given
by a solution identical to that for original monotonic loading, but with
the loading parameter replaced by the load reduction AL and the yield
strain and stress replaced by rwice their values for original loading, so
that stresses have the correct magnitude and direction in the reversed
zone when the changes due to load reduction are subtracted from the
distributions corresponding to. the griginal monotonic loading@The pro-
cedure is illustrated in Fig. 22. Neglgcting the possibility of crack closure,
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the plastic superposition is valid up to the point where the reversed
plastic zone is equal in size to the original plastic zone accompanying
monotonic loading, which corresponds to complete load reversal
(AL = 2L). Crack- closure always intervenes before complete load
reversal, as discussed subsequently. For unloadings L to L — AL, re-
loadings L — AL to L, and subsequent load cycles which do not cause
crack closure, the reversed plastic zone size and cyclic variations in
stresses, strains, and displacements depend only on the load fluctuation -
AL and are independent of the maximum load L.

As an example, for the finite crack in a large body configuration of -
Fig. 1, stress, strain, and displacement results from the elastic-perfectly
plastic models considered in Part I may be generally represented in the
form :

oi; = O'OZ,;]'(V/CI, 0, a‘w/ao)
€ij = eoE,;j(r/a, 0, crm/a,,) e aaaeaee (420)

u; = e,aU,(r/a,0,0,/0,)
for monotonic loadings, where r, 8 are polar coordinates centered at the
crack tip, o, is a remotely applied stress (shear or tension), o, and e,
are a representative yield stress and strain, and ) _,;, E;;, and U; are
dimensionless functions of their arguments, reversing sign with sign
reversals of ¢, . The distance w to the elastic-plastic boundary along any
radial line at angle # may be represented as

w=ap(0,0,/00). .. (42b)

Now if the applied stress is reduced in magnitude by As, , the above
formulas apply for the changes in stress, strain, and displacement, as
well as for the position of the reversed plastic region boundary, provided
0., 1s replaced by As,, and o, , ¢, replaced by 2s,, 2¢, . Thus the distance
w* to the reversed flow region boundary along any radial line at angle 6
is

The stress, strain, and displacement after unloading are o;; — Aoyj,
€:; — Aes;, u; — Au;, where the variations due to load reduction from

o, to o, — Acg, are
Ao = 20, :; (r/a, 0, Ao, /20,)
Ae;; = 2¢,Ei4(r/a, 8, Ao /20,) e e......(43D)
Au; = 2e,aU(r/a, 8, Ao, /20,) )

Complete load removal (As, = o) leaves residual stresses and dis-
placements; from Eqs 42 and 43, their values are those at full load o,
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minus twice those at half load ¢,/2. Reloading, ¢, — Aoc,, to o, Te-
stores stresses, strains, and displacements to values taken before un-
loading. Cycling over a stress range Ao, produces alterations Ac;,
Ae;;, and Au,; with each load rise and fall as given by Eqs 43b, with
Eq 43a giving o*, the size of the zone of cyclic plasticity.

The small scale yielding range is doubled for cyclic loadings since
o,./0, 18 now replaced by Ac,/20,. Thus if the elastic stress intensity
factor is found to control some aspect of the plasticity up to a certain
per cent of the limit load, the cyclic variation in elastic stress intensity
factor controls the corresponding cyclic aspect of the plasticity up to
load variations which are double that per cent of the limit load

The maximum plastic zone dimension and crack opening displacement
have been plotted in Figs. 6 and 7 for anti-plane shearing of a Tresca-
Mises material and in Fig. 17 for a discrete surface of tensile yielding
(or, with appropriate substitutions, slip) ahead of the crack. The same
figures apply for load cycling with » replaced by w*, u, replaced by
Au,/2, and 7, (or o) replaced by Ar_ /2 (or Ag,/2). Taking from these
figures 40 per cent of the fully plastic load as the upper limit on the
small scale yielding range, the corresponding upper limit on the small
scale yielding range for load cycling extends to load variations which
are 80 per cent of the limit load. Thus, for example, in a tension-tension
cyclic loading with a maximum stress s, = 0.8 o,, the total plastic
flow is poorly described by the Irwin stress intensity factor, while the
embedded cyclic plastic flow is determined to within a small error by the
variation in the stress intensity factor.

-Small scale yielding solutions for load cycling are obtained directly
from those for monotonic loading by replacing the stress intensity fac-
tor by its variation and doubling the yield stress and strain. Thus, for
example, in the anti-plane shear of a Tresca-Mises material one obtains
from the monotonic loading solutions of Egs 12 and 13

w* = (AKIII)2 (w - K%n)

41”'02 1!'7'02
w¥ w
A'Yz(lz(X;O) = 2“{0? 'sz(x,O) = 'Yo; S (44)
2 2
Auy = 2v,w* = %?i (ua = Yo = ’Y;Ifol;l)

for the cyclic plastic zone dimension, cyclic strain variation ahead of the
crack tip in the cyclic plastic zone, and cyclic variation in crack opening
displacement. Similarly, for a discrete surface of tensile yielding one
obtains from Egs 31 :
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x _ W(AKI)Z ( _ 71‘K12)
© 320,2 w o gf—oi
_ (k+ Doow*  (k+ D (AK;)
Au, = & = 6o, SRR .. (45)
(u _ (k 4+ 1Doow _ (4 I)KI2>
’ 257G 16Go, )

In these two examples, as for all perfectly plastic small scale yielding
situations, a cyclic variation in the stress intensity factor from zero to
some maximum value results in a cyclic plastic zone of reversing defor-
mation one quarter the maximum plastic zone size, and a variation m
crack opening displacement over one half the total opening.

Since a residual displacement remains at the crack tip after load re-
moval, the crack surfaces remain propped apart by the plastic flow.
A rough estimate of the stress variation required to initiate contact of
the crack surfaces may be had by examining the anti-plane shear case.
Cracks do not open or close in this case, but rather slide. However, the
load variation at which the shear displacement jump returns to zero at
the crack midpoint of Fig. 1 should give a good estimate of the tensile
load variation required to initiate closure. Supposing plastic flow to
give the crack an effective length of 2/(>2a), from the elasticity solution
of Eq 7 displacements along the upper crack surface are

u(x0) = Z I — (x+ a1 .. (46a)

Choosing / to give the small scale yielding crack opening displacement
result of Eq 13, which is noted from Fig. 7 to be fairly accurate up to
about 60 to 70 per cent of the limit load,

=a[l + (r/r). (46b)

At low stress levels this agrees with the interpretation of considering the
~ crack to be longer by half the plastic zone size. The change in displace-
ments of the crack surface due to a load reduction Az is then

Au(x,0) = % [(7*)Y — (x+ )2 .. ... (46¢)

where
Fo=all + (Ar,/2r)2M 2 oo (46d)
Setting Au, = u, at the crack midpoint x = —a, one finds that closure

initiates at a stress reversal satisfying

() -2 [+ @+ QT -}
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the formula being valid for 7, less than 60 to 70 per cent of 7, . Conse-
quently, closure initiates at Ar_/r, = 1.015 for »,/7, = 0.2, at At /7. =
1.065 for r,/r, = 0.4, and at Ar_/r, = 1.105 for r,/7, = 0.6. The
closure ratio must increase rapidly as the remote stress approaches the
limit load, as it is clear that its value would then approach two for the
crack in an infinite solid. Once closure of a tensile crack initiates, rela-
tively large compressive stresses would be expected necessary to cause.
much further reverse flow; thus, the above numerical results set approxi-
mate limits on the amount of load variation which should be considered
responsible for cyclic plastic flow under tension-compression load cycles.
A more exact analysis, based, say, on the discrete surface of tensile
yielding model and following through the calculations after closure ini-
tiates at the crack midpoint, would be useful for the interpertation of
fully reversed loading fatigue results.

T . Ay
A
A
At AT
-H: |
: Ar=r*(Ay)
[ o
i Y
x
Yo

FIG. 23—Stable hysteresis loop.

The anti-plane shear work-hardeninhg results for monotonic loading
may similarly be extended to cyclic loadings, when stress-strain relations
in the cyclic plasticity zone may be described as the traversal of stable
hysteresis loops (Fig. 23) for which the stress and strain variations fol-
lowing a load reversal are related by a law independent of the maximum
amplitudes of the loops. Morrow [34] has suggested such relations
between stress and strain variations as good approximations to experi-
mental results for cyclic plastic straining under zero mean load after a
small per cent of the low cycle fatigue life is passed. Whether similar
results hold in the presence of a mean stress is unclear. As in Fig. 23,
7.+ and v,* are the yield stress and strain in a coordinate system Ar,
Ay measured from a point of load reversal; in the plastic range, Ay > v,%,
Ar = 7*(Ay). The solution for stress and strain variations is identical
in form to that for monotonic loading. Thus, employing a polar strain
coordinate system Ay, ¢ analogous to Fig. 10c, the small scale reverse
yielding solution follows the form of Egs 21; in the reverse plastic zone:
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x = X*(Ay) + R*(Ay) cos 2¢1

............. (48q)
y = R*(Ay) sin 2¢ J
where o
(AKIII) °° du 'Ya*’ro*
t — —
X (A'Y) - ZW(TO*) {2 Yo To f‘y u2T=l_=(u) A’YT*( ,Y)} (48b)
(AK)III2 ’Yo*'ro* .
% —
RHAY) = o) By Ay

The geometric interpretation of Fig. 11 applies for cyclic flow also.
Lines of constant cyclic strain variation are circles of radius R*(Ay)
centered a distance X*(Ay) ahead of the crack. The perfect plasticity
cyclic solution of Eqs 44 is recovered by setting 7*(Ay) = 7% = 27,.
As an example, for a power law relating stress and strain variations in
the hardening range,

Ar = 7,5 Ay/v) .. .. ... . .......(49a)

the cyclic strain variation in the reverse flow plastic region ahead of the
crack caused by a load fluctuation AKyy is

. (AKIII)Z 1/ (1+N)
A’sz(x,O) = Yo l:(l—_l_mkﬁ:l ........ (49b)

The stress concentration of a crack has been assumed to remain infinite
in discussing unloading and cyclic loading solutions. Actually the large
strains generated result, as has been seen, in finite crack opening dis-
placements so that a small range of elastic unloading may be expected.
A rough estimate of this range may be had by assuming the crack to
open into a narrow elliptical shape with a root radius of curvature given
by the crack opening displacement corresponding to the maximum
applied stress o, . Then employing the stress concentration factor of
Eq 8a for the ellipse of length 2a in a large body, the elastic unloading
range Ac,, prior to reverse flow at the crack tip is given by

20, = Ac,[1 + 2(a/u,)'?] & 240 (a/u)t*. . ... .. (50a) -

Estimating the opening displacement from the discrete surface of tensile
yielding model, Eq 34c, the ratio of the elastic unloading range to the
maximum applied stress is

Ao,  [let Do, fo0)* l: (Ww)]}m
o —{ G (?‘:) log | sec w Ml (500)

At low stress levels this becomes independent of ¢./s,, and for plane
stress conditions the elastic range is given by

Ao, = (me,/2) %0, &3 1.25 €My, ... oo (50¢)
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where ¢, = ¢,/E is the yield strain in tension. The result is not highly
dependent on the maximum stress over a substantial range; at ../, = 0.8
the numerical factor is 1.49 and at ¢, /0, = 0.95 it is 1.89. There is a
rather fast transition as fully developed plasticity is attained, for the
numerical factor approaches infinity at the limit load for the perfectly
plastic model. This would suggest that overall plastic straining is re-
quired to cause sufficient crack blunting for purely elastic response to
all but the small load variations. Taking ¢, = 0.002, as appropriate for a
yield stress of 60 ksi in steel, below limit conditions the elastic range is.
roughly 5 per cent of the maximum applied stress. An approximately
equal figure results for the elastic range following the application and
complete removal of a maximum stress o, .

A further approximate analysis of crack blunting may be based on the
anti-plane shear perfect plasticity solution for a rounded end notch of
root radius p. Recalling that stress free boundaries are now semicircular
and taking x = 0 at the rounded notch tip, in the plastic re-
gion0 < x < w — p, '

Yo Uo
Ax,0) = = e (S5la
where u, is the crack opening displacement for monotonic loading. Here
p is considered of negligible size compared to the plastic zone size. As-
suming for the moment that the radius of curvature is fixed, for a mono-
tonic load increment resulting in du, ,

du,

d’sz ( X,O) =
p

It turns out that this expression is also correct for unloading and subse-
quent reloading if variations in u, are computed according to Eq 44.
Now if one assumes a similar relation to hold for tensile cracks, the root
radius of curvature would appropriately be chosen as the current crack
opening displacement resulting from the prior deformation history and
computed according to equations based on the neglect of crack tip blunt-
ing, as displacements are an integrated effect. Thus,

dp __ du
p+x u +x

At the potch tip this results in de, = dp/p, which would appear to be of
approximately the correct form. Thus integrating under the assumption
that p = u, = O prior to any load application (the only other plausible
assumption is an atomic spacing; any further crack blunting must be
assumed the result of plastic deformation although many authors prefer
ascribing a fixed nonatomic radius to cracks), after any loading se-
quence which results in a final opening displacement u,

de,(x,0) =~
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&(x,0) ~ 10g<1—l— ) ............... (52b)

Since u, is on the order of a yield strain times a plastic zone dimension,
the logarithm behaves as u,/x at distances much greater than the yield
strain times plastic zone size, in agreement with the shear result (Eq
51a). For a load variation which changes the opening displacement from
Us min tO U, max , the corresponding strain variation is from Eq 52a

Aey(x,0) =~ log (Z" mi“‘ E) ...... e (53a)

i

Now, regardless of the model employed the crack opening dlsplacement
for small scale yielding takes the form

2
&Kt

RIS I

U = «
Tp
for monotonic loading, where « is a numerical constant. Suppose that a
peak stress intensity factor Kj max is applied and removed, and then fur-
ther cyclic loads are applied over a range from zero to AK; ; then

- 2 : 2
el 2T 530

Oy Oo

Uo min

At the notch tip x = 0,

) 2
Ae,(0,0) = log [1 + <I?KI ) ] ............ (53d)
I max

Setting Ae, = 2¢, and taking the stress intensity factor proportional to a
remotely applied stress, this equation closely approximates the estimate
of the elastic unloading range given previously. When K nax = AK; (no
peak load), the strain variation at the notch tip is Ae, = 0.69. While this
result is independent of the load level, the size of the region ahead of the
notch affected by high strains is not. This falls off to Ae, =~ 0.22 when
the peak load is twice the subsequent cyclic amplitude, and Ae, &~ 0.04
when a peak load of five times the subsequent amplitude is applied.
Smaller values develop if the peak is out of the. small scale yielding
range. While one hesitates to attempt quantitive comparisons due both
to the highly approximate nature of the calculations and the lack of
data on the strain amplitude necessary to continuously propagate a crack,
this marked reduction in local cyclic strain by a peak loading does
appear consistent with the experimental results of Donaldson and
Anderson [35], who found that high peak loads could effectively stop
crack propagation for a large number of subsequent load cycles.
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General Features of Fatigue Crack Growth

The growth of fatigue cracks prior to catastrophic fracture is con-
veniently divided into processes of initiation as microcracks and propaga-
tion as macrocracks. The latter propagation stage is of primary interest
here. Thompson and Wadsworth [39], Avery and Backofen [/I], and
Grosskreutz [12] have surveyed work on micromechanisms relating to
crack initiation. Commonly, initiation occurs at a free surface. The cyclic
component of tensile stress at a surface point sets up alternating shear
stresses, maximum on 45-deg planes with the tensile direction. Con-
veniently oriented slip systems respond by the formation of slip bands
resulting in a roughened surface topology in the form of intrusions and
extrusions. These apparently act as stress concentrators so that cracking
occurs along the slip bands. Interior initiation sites at grain boundaries
may occur in the presence of overall cyclic plastic deformation. While
no clear demarcation point exists, cracks initiated at 45 deg with the
tensile direction tend to propagate as macrocracks on planes perpen-
dicular to the tensile direction. Factors such as corrosive environments
and fabrication imperfections in practical structures tend to limit the
importance of initiation processes; cracks may frequently be present
from the start [35].

Striation formation [12,41] is observed on portions of fatigue crack
surfaces perpendicular to the tensile direction, both in metals and
polymers [42]. Estimates of striation spacings agree well with macro-
scopic growth per cycle measurements [4]], so that fatigue crack growth
would appear continuous at least in regions of striation formation. This
need not always be the case; Frost [40] reports continuous fatigue inter-
mingled with occasional spurts of short fracture advances in some’
cases. Laird and Smith [43] have demonstrated a mechanism of stria-
tion formation through crack tip deformation under large cyclic stresses;
the observed deformation pattern is much like what might be expected
from the slip line field of Fig. 21. A fatigue crack mode transition from a
90 to 45-deg orientation of the crack surface with respect to.the tensile
direction is observed in sheet materials at sufficiently high load levels
[40,44], similar to the plane stress fracture mode transition [45] under
" monotonic loadings. Hertzberg [4/] found no striations on 45-deg por-
tions of the fatigue crack surfaces; ductile “dimples” appear instead,
elongated in a direction perpendicular to the direction of crack advance.

A survey of work on the relation of continuum considerations to
models of microstructural “damage” accumulation and material sepa-
ration is given in the next section. For the present we examine what gen-
eral conclusions on fatigue crack growth follow the elastic-plastic analy-
ses discussed earlier, without specific reference to microstructural
considerations and fine details of cyclic stress and strain distributions. While
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conclusions are more limited in detail, the groundwork is firmer. The
varying results of Figs. 8 and 9 raise valid cause for doubt that continuum
plasticity solutions can confidently be extrapolated to the fine scale of the
microstructure. For example, a cyclic stress variation of one fifth the
yield stress sets up a cyclic plasticity zone of roughly one hundredth of
the crack depth in size; this figure is in the size range of one or a few
grains for cracks less than an inch in depth.

One of the central results emerging from the analyses of all the elastic-
plastic models is that, for small scale yielding, the plastic deformation is
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FIG. 24—The correlation of crack growth rate in terms of stress intensity
factor variation for 7075 T-6 aluminum (maximum load equal to load range) (Ref
47).

entirely determined by the history of variation in the Irwin stress inten-
sity factor. Thus two different cracked bodies with identical material
properties (and sheet thickness where three dimensional considerations
govern, 'as in plane stress yielding) will exhibit identical fatigue crack
extensions if each is subjected to the same small scale yielding range time
history of variation in elastic stress intensity factor. Paris, Gomez, and
Anderson [46] first proposed a correlation of this type; a series of sub-
sequent studies by Paris [47], Paris and Erdogan [6], Donaldson and
Anderson [35], Schijve and Jacobs [48], and Schijve et al [49], employing
both their own data and that of several other investigators, have amply
documented the validity of this approach. McEvily and Illg [50] de-
veloped an equivalent approach based on the variation of the elastically
predicted maximum concentrated stress, viewing a crack as a notch with
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a fixed root radius sufficiently small so that the direct relation with stress
intensity factors noted in Eq 8¢ applies. (Incidentally, most of the litera-
ture on fatigue crack growth employs a definition of the stress intensity
factor which differs by a factor of =!/2 from that given here.) A cyclic
loading may be characterized by the maximum load value, Ly.x , and the
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several materials (Refs 6 and 47).

load range, AL. When both the maximum plastic zone size and cyclic
plastic zone size are in the small scale yielding range, the loadings and
planar geometry of the cracked body are sensed at the crack tip only
through the maximum, K..., and range, AK, in the stress intensity
factor. The maximum value may be represented in the dimensionless
form '

..................
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the latter following since stress intensity factors, coming from linear
boundary value problems, are directly proportional to applied loads
times functions of the current geometry. Thus, where da/dn is the exten-
sion of a crack tip per cycle of loading,
da

> =fAKN) ... (54b)
for the comparisons of crack growth rates when all other material char-
acteristics are held constant. One of the most striking verifications of a
result of this form was provided by Paris [47] on the basis of data on
7075T-6 aluminum with A = 1. Figure 24 (Fig. 1 of Ref 47) shows crack
growth rates as a function of stress intensity factor range for two cen-
tral crack configurations, one [35] loaded by wedge forces F per unit
sheet thickness and the other. [50] by a tensile stress ¢. Without correc-
tions for finite width (included along lines of the infinite array analysis
of Fig. 18 in plotting the data), the stress intensity factors are

K = o(mwa)t’? and K= F(may™2. .......... (55)

AK increases with crack length for a constant tensile stress variation and
decreases with crack length for a constant wedge force variation. While
the loadings are about as different as could be imagined, both cases fall
on essentially the same curve.

Figures 25a, b, and ¢, from Refs 6 and 47, demonstrate a similar suc-
cess of the stress intensity factor variation in unifying crack growth rate
data for several materials. Figure 25a represents the results of five inde-
pendent investigations on 2024T-3 aluminum. Figure 256 replots in a
similar fashion that of Fig. 24 on 7075T-6 aluminum, with the results of
another investigation added. The two aluminum alloys plots are repre-
sented by straight lines in Fig. 25¢, which shows additional data on mag-
nesium, titanium, molybdenum, and steel. The scatter is largely due to a
failure to distinguish, in these plots, effects due to maximum loads greater
than the load variation range, differences in test frequency, differences in
sheet thicknesses, and mode transition from 90 to 45 deg with the tensile
axis. The plots being log-log, straight lines are indicative of power law
relations. All of the straight lines drawn have a slope of four so that, as
noted by Paris and Erdogan [6], the broad trend of the data is repre-
sented by a crack growth rate proportional to the fourth power of the
stress intensity factor variation. At the same time, it is clear from the
figures that a law of this type may provide a poor approximation over
limited ranges of data which may be of interest in particular applica-
tions.

All perfect plasticity models discussed earlier predict a dependence of
the cyclic plastic flow only on the variation in stress intensity factor; the
same conclusion follows for work-hardening behavior when stable
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hysteresis loops of the type described in connection with Fig. 23 are
formed. Thus, it is not surprising that the maximum load achieved is a
minor variable, as compared to the load range, in determining fatigue
crack growth rates. An obvious exception is when the maximum is less
than the range so that crack closure may intervene, as in the fully re-
versed loading tests by 1llg and McEvily [5]]. The small range of com-
pressive loading prior to crack closure predicted by Eq 47 would suggest
that for reversed loadings in and somewhat above the small scale yielding
range, the load variation should be counted simply as the tensile part of
the cycle; the interpretation appears justified as crack growth rates are
only slightly faster for fully reversed loadings [5/]. Aside from the possi-
bility of crack closure, the effect of different maximum loads with the
same load variation is to increase, with increasing maximum levels, the
average strain distribution about which the cycling takes place. While
perfect plasticity predicts a zero mean stress in the cyclic plastic zone,
the effect of hardening for a hysteresis loop shift in the direction of the
monotonic loading stress, as in Fig. 23, would be to place a biasing aver-
age stress distribution, more intense with increasing maximum level in
the cyclic plastic zone.

Judging from the data of Schijve et al [49] on 2024T-3 under various
ratios A of maximum load to load range, at a given range of variation of
the stress intensity factor the crack growth rate is tripled by doubling A
from 2 to 4. For comparison, a doubling of the stress intensity factor
range of variation increased the crack growth rate by a factor between 10
and 15. Results at a fixed value of A\ and sheet thickness, as by Schijve
et al [49], greatly reduce the scatter in plots such as Fig. 25a. Paris [52]
has tabulated values of the coefficient in a fourth power law description
of crack growth rates for several materials and conditions. He finds an
increase in the ratio of maximum to range from 1 to 4.5 increases growth

‘rates, at the same stress intensity factor range, by a factor of roughly 10
in both 2024T-3 and 7076T-5. An increment by a factor of 4.5 in the
stress intensity factor range increases growth rates by a factor of ap-
proximately 200 to 400. Frequency effects are slight in aluminum alloys,
as might be expected from their relatively rate independent stress-strain
behavior. An increase from 20 cpm to 20 cps roughly doubles [52] growth
rates in 2024T-3.

Liu [44] has proposed that the fatigue crack mode transition from a 90
to 45-deg orientation with the tensile direction in sheet materials may be
explained as a transition from plane strain (Figs. 20 and 21) to plane

 stress (Fig. 19) plasticity conditions, an extension of Irwin’s [45] approach

to fracture mode transition. Plane stress conditions may be expected to

Initiate when the plastic region becomes sufficiently large so that 45-deg

shearing is kinematically possible. Equivalently, one then expects mode
transition at a constant ratio of plastic zone dimension to sheet thick-
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ness, 7, as found by Liu [44] and Hertzberg [4]] in cases where Kn.x =
AK, and the plastic zone dimension was estimated as proportional to the
square of the ratio of stress intensity factor to yield stress. Results re-
ported by Hertzberg would lead to a maximum plastic zone dimension
equal to the sheet thickness and a reversed zone size of about one quarter
the sheet thickness at transition, whether computed according to the
discrete slip line model of Eq 38a (with the plastic zone size now counted
as twice the slip line length) or the surface of tensile yielding model of
"Eq 3la. Broek and Schijve [53] found that a similar idea, for various
cases of a maximum load greater than the load range, did not accurately
predict the mode transition; the ratio of both maximum and cyclic zone
sizes to thickness decreased with increasing thickness. They also report a
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FI1G. 26—Delay affects in 7075 T-6 aluminum crack propagation due to re-
duction of stress range from a. to o2 (data from Ref 54).

systematic increase in growth rates with increasing sheet thicknesses prior
to transition, although the effect becomes obscured after development of
the inclined 45-deg fatigue crack surface.

The success in correlating crack growth behavior with stress intensity
factor variation, as predicted by the mechanics analyses, may also be
expected in situations of similar variations in stress intensity factors due
to complicated deterministic or random loadings. Loadings with varying
ranges introduce, however, an additional complication in that a sudden
shift from a large to small range of load variation tends to stop crack
extension from a few hundred to a few million load cycles [35,54]. Hard-
rath [54] has reported the results of tests on 7075T-6 aluminum in which
a stress cycling range from zero to ¢ is suddenly followed by a cycling
range from zero to o;. As expected, for ¢; > o1 the crack growth rate
immediately adjusts to that corresponding to the latter stress range;
delays result for o < o;. Hardrath’s suggestion that the presence of
residual compressive stresses near the crack tip is responsible for delays



RICE ON MECHANICS OF CRACK TIP DEFORMATION 297

appears to lack support from the plasticity analyses. For all the perfectly
plastic models and for the stable hysteresis loops work-hardening model,
the zone of cyclic plastic deformation as well as cyclic strain variations
within this zone are unaffected by the prior load level, so that the residual
stress argument would at most lead to an effect comparable to the slight
consequences of changing the mean load level. A more plausible explana-
tion would be based on the blunting of the crack tip by large deformations.
When both ¢; and ¢ are in the small scale yielding range, the analysis in
connection with Eq 53d suggests that the strain variations at the blunted
crack tip depend only on the ratios of the stress intensity factors K; and
K, or equivalently in this case on the ratio o1/s5, and not on the current
crack length and separate ratios of o; and o5 to the yield stress. Supposing
the delay number of cycles to depend only on the reduced strain variation
at the crack tip, a unique relation between delay time and stress ratio
o1/a2 would be expected from the argument based on crack blunting.
This conclusion appears roughly verified by the replot of Hardrath’s
data in Fig. 26. The largest prestress, o1, 15 50,000 psi which is about 70
per cent of the yield stress so that Figs. 7 and 17 appear to justify the use
of small scale yielding results as the calculation is based on crack opening
displacements. Perhaps the systematically shorter delays at the same load
ratio for the highest prestress is due to a higher average strain, about
which variations take place, at the blunted crack tip.

For random loadings in the small scale yielding range, crack exten-
sions may be expected identical in separate configurations if each crack
tip experiences statistically identical variations in stress intensity factor.
Paris [47] has displayed data verifying such a postulate for narrow band-
width random loadings of geometrically similar power spectra, but differ-
ent root mean square (rms) stress levels varying from 0.03 to 0.05 of the
yield stress. The scatter is slightly larger than for cyclic loadings, possibly
due to the enhanced likelihood of severe tip blunting at the higher rms
levels. Although no computations of the statistical distribution of plastic
strain variations have appeared (these could easily be provided for the
various perfectly plastic models through a relatively simple computer
program coupled with digitally generated random loadings), it appears
reasonable on the basis of unloading and cyclic loading solutions to
assume that the plastic deformations are controlled primarily by the dis-
tribution of rises and falls [55,56], AK, in the stress intensity factor.
Rice et al [47,56] and Smith [57] have shown that crack growth rates may
be correlated in terms of averages in stress intensity factor rise and fall
heights, AK, for both narrow bandwidth random loadings and for doubly
peaked (two dominant frequencies) wide bandwidth loadings. When
correlated in this way all the random load crack growth rate data ap-
pear to fall on roughly the same curve, in spite of the great differences in
waveform appearance for the different random loadings. But neither
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random load crack growth rates, nor their general trend of variation
with averages of AK, agree with cyclic loadings crack growth rates cor-
related in the same way. This suggests that it is not so much the wave-
form appearance, but rather the very introduction of randomness in
load sequencing, which creates differences in comparison to the cyclic
loading case. Hardrath [54] and Hardrath and Naumann [58] have indi-
cated the differences in fatigue life resulting from similar load amplitude
distributions programmed in different nonrandom sequences.

Erdogan and Roberts [59] reported a study of crack growth in thin
plates subjected to fully reversed bending loads, and obtained a similar
correlation of propagation rates in terms of the variation of a stress
intensity factor defined through elastic solutions for plate bending.
Their comparison with the tensile case suggested that for a given re-
motely applied stress range on the surfaces of a plate under bending, the
propagation rate is approximately that which would result from one half
that stress range applied in direct tension to a geometrically similar
cracked plate. For identical stress ranges, propagation rates under direct
tension are about 10 to 16 times faster than those for bending. Erdogan
and Roberts also gave an approximate analysis of plastic yielding, based
on an idea similar to the discrete surface of tensile yielding model, which
suggested that the cyclic plastic zone for a given surface stress range in
bending is equal in size to the zone resulting from one half that stress
range applied in direct tension.

No single parameter plays the role of the elastlc stress intensity factor,
in determining the crack tip plasticity, when yielding is on a large scale
compared to planar geometric dimensions. Thus crack growth rates may
be predicted or estimated from data collected in the small scale yielding
range only in conjunction with a reliable theory of crack propagation.
Some progress may still, however, be anticipated from continuum con-
siderations alone. The small scale yielding range for load cycling is double
that for monotonic load application. Thus to the extent that the maxi-
mum applied load is a secondary variable in comparison with load range,
situations may be expected in which the stress intensity factor variation
correlates growth rates even though the total plastic region is outside the
small scale yielding range. Further, although adequate experimental
data to check such hypotheses are not available, one might expect that
in the large scale yielding range crack growth rates may be correlated by
such parameters as the maximum and cyclic plastic zone sizes or crack
opening displacements, both of which are equivalent to the maximum
stress intensity factor and its variation at low load levels. Some orderings
of deviations from small scale yielding range growth results are also pre-
dictable. From Figs. 6 and 7, along with their interpretations for cyclic
loadings, the small scale yielding solution always underestimates actual
results for remotely applied stréss loadings, the underestimate being
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more severe with the smaller crack length to width ratios. Thus growth
rates from small scale yielding tests conducted with long cracks and low
net section stresses tend to underestimate rates at the same stress in-
tensity factor when large scale yielding occurs, and for configurations
with the same (high) net section stress and stress intensity factor, cracks
grow faster for the smaller crack length to width ratios. A large scale
yielding solution for wedge loadings as in Fig. 24 may be obtained
through known general methods [7] for the discrete surface of tensile
yielding model. It turns out in this case that the small scale yielding solu-
tion overestimates actual results, so that with wedge force loading growth
rates are slower, with large scale yielding, than those occurring in a small
scale yielding range test at the same stress intensity factor. Large scale
yielding analyses are not available for situations involving net section
yielding. This is an inherent difficulty with perfect plasticity models as
unrestricted flow ensues; for work hardening an apparently tractable
formulation [9] of the net section yielding problem is available in the
anti-plane shear case, although mathematical difficulties have to date
limited solutions to the case discussed in Part I. Consequently crack
propagation under repeated overall plastic straining, as in low-cycle
fatigue, currently is beyond the reach of reliable analytical treatments.

Theories of Fatigue Crack Growth

Obvious importance attaches to the prediction of crack growth rates
in terms of continuum and microstructural variables for arbitrary load
sequences. Only the studies of Head {60,61], McClintock {62], Rice [7,63],
and Weertman [64] have attempted the direct use of elastic-plastic
analyses, and none of these incorporated the possibility of crack blunting
and delays which are known to occur with block loadings or peak over-
loads and probably form an integral part of fatigue crack growth under
more general deterministic or random loading sequences. Thus, the work
surveyed here is limited to nonvariable amplitude cyclic loadings and
should be viewed as at most a start toward the problem of relating con-
tinuum analyses to material separation by fatigue.

Dimensional considerations were introduced by Frost and Dugdale
[65] and Liu [66,67]. The relevant variables for a crack of length a in a
large body are (assuming the maximum stress to equal the stress range)

Ac, a,0,,6,¢ , N, %
where the elastic modulus is included implicitly through the yield strain
€., N is the hardening exponent or some other dimensionless variable
(or set of variables) characterizing the hardening behavior, and ¢, is some
characteristic fracture strain. Attention is limited to plane strain situa-
tions so that sheet thickness does not enter. With the assumption that
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continuum variables alone control the extension per cycle at a crack tip,,
there results [65-67]

Z__:z — aﬁ(Aa-/?-o,ep,Eij)......;....‘...-(56a)

where fi is a dimensionless function of its arguments. Liu [67] recog-
nized the requirement of applied stress and current crack length entering

only in the form of the stress 1nten51ty factor variation, AK = Ae(mwa)'?,
and therefore proposed

4a.  a(A0) « (MK (56b)
dn
On the basis of a somewhat arbitrary modification of a result of Head dis-
cussed subsequently and the requirement of fitting samples of data with
a growth rate proportional to crack length, Frost and Dugdale proposed
da alAe)®. (56¢)
dn

a result contrary to predictions of continuum analyses in the small scale
yielding range typical of high-cycle fatigue, but possibly indicative of the
direction of the large yielding modifications necessary for stress ranges
above about 80 per cent of the net yield stress. Paris and Erdogan [6] and
Schijve and Jacobs [48] have amply documented the failure of these laws
to fit the broad trend of crack growth rate data. For example, in Fig. 24
an increase in AK by a factor of 10, from 4400 to 44,000 Ib-in.7%?2 in-
creases the growth per cycle by a factor very nearly equal to 104, from
3 X 1077 to 2.5 X 1072 in. Liu’s result would predict an increase in
growth per cycle by a factor of only 10%, and the Frost and Dugdale result
would increase growth by a factor between 10? and 10%. Both fail by one
or two orders of magnitude, although both can admirably fit limited
portions of the available data [6]. Liu [44,68] has suggested that part of
the difficulty may lie in the failure-to distinguish between the plane stress
and plane strain modes of crack growth in the general trend of the data,
thus introducing sheet thickness as another length. The maximum stress
intensity factor value cited above leads to a maximum plastic zone size of
w =& 0.16 in. in 7075T-6 aluminum, according to the discrete surface of
tensile yielding model, Eq 31a. As noted earlier, this would correspond
to mode transition in all sheets thinner than about 0.16 in.; however,
the general fourth power trend of the data extends to lower load levels
and at half the maximum stress intensity factor value the transition
thickness would already be reduced to about 0.04 in. While Liu does give
evidence [44] of different growth rates before and after transition, he
does not verify (Eq 56b).

Equation 565 is the logical consequence, for the usual small scale yield-
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ing situations, of an assumption that only continuum variables govern
fatigue crack propagation. Its failure may be taken as a definite indica-
tion that another characteristic length, related to material separation,
must enter a theory of crack growth. Calling / this characteristic length,
a dimensional analysis incorporating the small scale yielding result that
loads and geometry enter only through the stress intensity factor leads
to

da _ (AK)®

dn X

FIAK)? (16,5, ey er ) N1 oo (57)

/2 being dimensionless. If several characteristic lengths enter, their ratios
are understood included. When sheet thickness, ¢, enters as in the plane
stress mode, an additional dimensionless parameter (AK)?/(fo.?) is in-
cluded. For maximum loads different from the load range, the dimen-
sionless ratio A = K,.,/AK enters. As growth rates generally vary faster
than (AK)? any increase in / while holding other parameters constant
serves to lower crack growth rates. The choice of [ is related to the choice
of a separation mechanism. McClintock [62] (see further), for example,
takes / as the characteristic cell size formed by cyclic straining [/2] and
achieves a remarkable unity in predicting growth rates by taking this as
the smallest size at which the concept of a homogeneous fracture strain
retains meaning. Other choices lead to physically reasonable results. As
material separation involves bond breakage and, in fatigue, possibly
partial rehealing, / may be related to the surface energy or work per unit
area in separating bonds (surface energy divided by a yield stress or
elastic modulus has length dimensions). Thus picturing environmental
effects as reducing surface energy through the formation of weak easily
broken bonds with the environmental agent, similar to proposals by
Westwood [69], known influences [70,71] of environments in reducing
fatigue life would be expected. Hertzberg [4/] reports no distinct surface
markings indicative of a characteristic length in regions of striation
formation, so that surface energy may indeed provide the appropriate
length. Ductile dimples do occur, however, on fully developed plane
stress fatigue surfaces and these might be the result of progressive void
growth and coalescence under repetitive straining, similar to an observed
mechanism of ductile rupture [72]. In this case the mean void nucleation
site spacing would provide the characteristic length.

Head’s [60,61] work on fatigue was done before treatments of plasticity
near cracks were available and is based on drastic simplifying assump-
tions. A cracked body is viewed as a composite array of three types of
continua. Taking infinitesimal elements of each of these types, material
directly ahead of the crack is viewed as an array of independent rigid-
plastic tensile bars, each hardening linearly from a yield stress o, to an
ultimate stress o; at a modulus E, . The material above and below the
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crack and rigid-plastic bar array is viewed as an array of independent
clastic tensile bars each carrying the remotely applied stress o. The re-
motely applied stress is transmitted to the rigid-plastic bars both directly
and through an array of elements transmitting load by shear. Head chose
properties of the shear elements and lengths of the elastic tensile bars so
that an elastic solution of the model properly gave the opening displace-
ment at the center of the crack. The only shear elements activated are
those above and below the crack and plastic zone, so that the stress on
the line ahead of the crack turns out to equal the remotely applied stress
outside the plastic region.

An approximate solution was then given for the crack growth rate
due to a stress range —o to 4o, under the assumption that separation
occurred when the rigid plastic elements cyclically hardened in the ab-
sence of a Bauschinger effect up to the ultimate stress o7 . At low stress
levels, ¢ < o,

L_Z'_a B Ewo_aaa/z

dn 3E(s; — o) (60 — o) 22’
where 2/ is the height of the rigid plastic elements in front of the crack.
Head does not suggest how the constant / should be chosen. Contrary to

the 1 1mpres31on created by several summaries [40,6] of Head’s work, the
plastic zone size is not constant but rather given by

_ (la)1/2

2 o0,— o0

(a({o‘o).....,..(s&l)

As the computation is for low stress levels it is appropriate to replace
o, — a by g, so that Eq 58a gives a growth rate varying as the third power
of the stress intensity factor and Eq 58b gives a plastic zone size propor-
tional to the first power. The deviation in the latter result from depend-
ence on the square of the stress intensity factor is clearly due to the arti-
ficial introduction of the length /. Frost and Dugdale obtained Eq 56¢
by assuming / proportional to crack length, but as Paris and Erdogan
have noted [6] / must be chosen proportional to stress squared times
crack length if it is to be interpreted as a plastic zone dimension. Head
also provided a solutlon for the remotely applied stress in excess of the
yield stress, ¢ = o, :

da 2E & 3 3/2
dn Eoj (o2 — o®) M2

Aside from the drastic idealization of a continuum and the unidentified
length, Head’s proposed mechanism of separation by continuous work
hardening up to a fracture stress may be questioned, as materials do not
harden indefinitely under cycling straining [/2,34] but rather tend to
stabilize and in some cases to cyclically soften.
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Rice [7,63] and Weertman [64] considered essentially identical models
for fatigue crack growth, both based on the plasticity model of a dis-
crete surface of tensile yielding or slip ahead of the crack. Tracing the
deformation history of a particular point from when that point is first
encompassed by the plastic zone to when the crack tip advances to that
point, separation is assumed to occur when the total absorbed hysteresis
energy equals a postulated critical value U* per newly created surface
area. Letting Au,(x,0) be the plastic displacements of the discrete surface
ot tensile yielding per load reversal when the crack tip is at x = 0 and
assuming the growth rate sensibly constant in a traversal of a zone w™* of
reversed deformation, the growth rate is given by

da 4, [

fa_t fo Ay (x0)dx . (59)
Restricting attention to the small scale yielding range and obtaining
Au,(x,0) by doubling the yield stress and strain in the monotonic loading
solution, there results

da _ 57(x + 1)a,” (AKY' _ 57(1 — v*)e0s (ﬂ()‘*
dn 48U*G \20,) ~  96U*

Oo
3 2 4
_ o (196‘U’; )€ (A:w) a’..(59b)

the latter forms using the plane strain value of x = 3 — 4». While the
fourth power dependence resulting is in accord with the general trend of
experimental results, the model does not provide a direct interpretation
of the hysteresis energy U* required per unit of newly created fatigue
crack surface area. Choosing a best fit fourth power law to the data of
Fig. 25a, U* ~ 6.3 X 10* Ib-in./in.? for 2024T-3 aluminum. For com-
parison, the energy absorbed in fracture of this material under monotonic
loading is typically over two orders of magnitude smaller at about 3 X
10% 1b-in./in.? It is of interest to note that a difference in total ductility
of the same order of magnitude (typically 100 to 1000 times) occurs in
fully plastic push pull fatigue tests as opposed to monotonic fracture
tests [73,62]. Perhaps the most serious objection here is the simplicity of
the discrete surface of tensile yielding model; while the model no doubt
gives accurate estimates of gross features of the plastic deformation such
as zone size, crack opening displacement, and total hysteresis energy
losses, all fine details of the plastic strain distribution are lost. Also, at
high stress levels plastic regions tend to change shape so that the per cent
of the hysteresis energy absorbed in regions very near the fracture surface
will not be constant. Nevertheless, Wells [74] does find that a similar
failure criterion based on energy absorbed at the crack tip (that is, yield
stress times crack opening displacement) tends to correctly extend the -
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small scale yielding monotonic fracture criterion into the large scale
yielding range. :

McClintock [62,14] has developed a mechanics of crack extension by
fatigue, stable slow growth, and catastrophic propagation, employing
the anti-plane shear perfect plasticity solution and a failure criterion
based on plastic strain accumulation over a “structural size”” of the ma-
terial. While valid objections might be raised to the relevance of these
results for tensile loadings, we have seen that gross features of the plastic-
ity are relatively insensitive to the deformation mode, and, indeed, his
studies have provided the most satisfactory conceptual and quantitative
basis for the entire range of observed tensile crack extension behavior in
ductile materials. One of the less obvious results arising is the differentia-
tion between strain increments due to crack extension under fixed loads
as opposed to load variations at a fixed crack length. For example, in
the case of an edge crack of length a in a large body remotely anti-plane
sheared, the strain 'variation per unit crack length increment at fixed
loads in the plastic region ahead of the crack tip is [62] (approximately)

M _ Y <1 _{_S_I_]og;i:) ............. (60)

oa X

where the crack tip is at x = 0 and w is the plastic zone size accompany-
ing monotonic load application. While the shear case probably tends to
somewhat overestimate growth effects in tension, their inclusion results
in a prediction of observed stable crack extensions prior to catastrophic
fracture, more pronounced for increasing fracture ductility. Even at
relatively low stress levels the stress intensity factor fails to uniquely
characterize the plasticity when significant growth under fixed loads
occurs; as a consequence the small scale yielding range for fractures con-
trolled by the stress intensity factor is greatly reduced in very ductile
materials under plane stress conditions where slow growth is most pro-
nounced. Similar effects do not occur in fatigue crack propagation as
strain variations due to load cycling at sensibly fixed crack lengths over-
whelm the then negligible contributions due to growth. Growth effects
would, however, be important in the few load cycles prior to catastrophic
propagation in which the extension per cycle is comparable to the plastic
zone size, but these compiise a negligible portion of the fatigue life.

The strain singularity at the crack tip forces one to work with a spe-
cially defined average strain over a finite region or to limit the region over
which strain variations are considered consequential in determining sepa-
ration. McClintock has chosen an average strain defined over a narrow
wedge shaped region of angle 60 and length equal to the structural size, /:

1

Yy %,0) = P36/2

i
_[ Yy(x + r,0)rdédr......... (6l1a)
0
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Dropping the negligible crack growth contribution and assuming the
growth rate sensibly constant in traversing the reverse yielding plastic
zone, an adaption of the Coffin [75] criterion to varying amplitude plastic
~ straining leads to the growth rate

da _ fo [QMT de.. (61b)

dn i
where A¥;,(x,0) is the variation in the plastic portion of the average
plastic strain caused by a load variation, w* is the reversed plastic zone

size, and v, is the monotonic fracture strain appropriate for the structural
region of size I. There results [62] when w* >> [

da _ 75 (&)z CN [EREEEEERTEE (61c)

dn Ys

or for small scale yielding when the stress intensity factor variation, AK,
controls the size of the reversed plastic zone,

da _ 15 (70>2 (AK)" 1.5 (%>2 (Afw)“ a (61d)
dn 1602 \y;/ It 16 \y;/ \n /I~
the latter form for the edge crack of length a or central crack of length
2a in a large body.
The result is not insensitive to the way the singularity is dealt with.
For example, if only strain variations up to the point at which the dis-
tance to the crack tip is the structural size are considered of consequence

in determining separation, which would be consistent with the treatment
of monotonic fracture given by McClintock and Irwin. [/4], there results

da [ A'yé’z(x,O)J2
e I e (624)

And integrating with Ay, = 2y,(o*/x — 1),

da _ Yo 2 [(w*)z _ * w* — :l
= 4 (};) ; 20 logT l ........ (62b)

which resembles a fourth power dependence only for w* >> I. Converting
the failure criterion into one of a critical hysteresis energy absorption,
7oysT per unit volume,

da 2 [ .,
E’,l = :;,Tk./; A’sz(x’o) dx ............... (620)
and
da _ , % * w* (F :|
a;z = 4:);;{ I:OJ logT (w l) .......... (62d)

The variety of possibilities is clearly endless, further pointing to the re-
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quirement of a better knowledge of the micromechanisms involved in
material separation. Some results tabulated by McClintock tend to sug-
gest the reasonableness of such estimates. Taking / equal to 5 p (2 X
10~*in.), a typical cell or subgrain size, the required ratio of the fracture
strain to yield strain may be computed so as to fit experimental results to
Eq 614, replacing shear stresses by analogous tensile stresses. Within
factors of about 2 to 4, known monotonic fracture strains for two alumi-
num alloys, two high strength steels, and mild steel appear accurately
estimated, and the materials appear to be correctly ordered as to ductility
[62].

The fact that Eqs 59 and 61 do not lead to major discrepancies lends
hope that further progress may be made in relating continuum solutions
to microstructural separation. Specifically, better continuum plasticity
analyses and clearer pictures of separation mechanisms are needed.
Crack blunting must be better modelled if varying amplitude loadings
are to be handled. Probably the mathematical simplifications inherent
in the boundary layer approach will make small scale yielding solutions
the first obtained. As has been noted, these are adequate for virtually all
of the usual high-cycle fatigue life. But the effects of large overloads and
low-cycle fatigue loadings causing nonlocalized plastic flow cannot be
handled until complete large scale yielding analyses are available.
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DISCUSSION

W. E. Anderson' (written discussion)—Have you attempted a plas-
ticity solution for the case where the engineering stress-strain curve
peaks directly after the elastic portion and decreases continuously to
failure?

M. R. Achter® (written discussion)—Your Class III mode looks as if
it might represent high temperature failure. A line scribed on the un-
deformed specimen surface will be seen, after high temperature deforma-
tion, to have an offset at the point where it crosses a grain boundary.
From this, it is inferred that adjacent grains suffer shear displacement
with respect to each other along the grain boundary plane. Cracks are
initiated in these grain boundaries and are propagated inward from the
surface. Do you think that you could apply your Class III treatment to
the case of intergranular failure at high temperature?

J. C. Grosskreutz® (written discussion)—Is it possible, at the present
stage of elastic-plastic theory, to quantitatively describe the plastic relaxa-
tion process observed by Dr. Laird? If so, how would the crack length
enter into the crack growth law?

J. R. Rice (author)—Upon examining the elastic work hardening plas-
tic anti-plane strain solution for a crack described herein, I find the.
solution method to fail for the unstable class of stress-strain relations
noted by Mr. Anderson. Discrete slip line models appear to be an ap-
propriate model of observed discontinuous yielding when the instability
is abrupt as in upper and lower yield point phenomena, but no analysis
is available for more gradual relaxations of flow stress with strain. Grain
boundary sliding in creep as noted by Dr. Achter could be modelled as
a crack with relative motion of surfaces in the two sliding modes, just as
such models have been useful in describing the dependence of uncon-
strained flow and crack nucleation on grain size in the Petch-Stroh analy-
sis of slip line blocking (dislocation pile-up) at a grain boundary.

Dr. Grosskreutz has indicated a very important point in connection
with Dr. Laird’s observations of striations and their interpretation in
terms of a fatigne mechanism. As is clear both from dimensional analysis
and the various elastic-plastic models examined herein, a crack growth
rate proportional to crack length (more generally, stress intensity factor
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squared) will occur if advance is to result purely from a ductile crack
opening by sliding off of material at the tip in each load cycle. Further,
every striation would then have to be geometrically similar to every
other striation (same ratio of spacing to depth). These results are clearly
in violation of observations: the general trend of growth rate data is much
closer to a proportionality to crack length squared, and Dr. Laird has
shown pictures indicating an increasing ratio of striation spacing to
depth as crack length or stress level is increased. This raises the question
as to whether striations are in themselves indicative of a separation
mechanism or are simply observers on the scene. For example, suppose
we imagine a ductile material subjected to a cyclic loading while a crack
is steadily cut through the material with a razor blade. Striations will re-
sult as an inevitable consequence of the cyclic loading combined with a
material capability for permanent deformations, but they then have
nothing to do with the separation mechanism. This is precisely the prob-
lem with Dr. Laird’s suggestion that striation markings necessarily indi-
cate a mechanism of separation in fatigue—other interpretations are
possible. In particular one interpretation is that the observation of stria-
tions simply means that crack opening displacements (approximately
equal to striation depth) are comparable in size to the growth increment
per cycle (striation spacing). Indeed, application of Eqgs 43b, 44, and 45
for crack opening displacements to the data for the two aluminum alloys
of Figs. 24 and 25 gives a prediction of opening displacements compara-
ble in size to the measured growth per cycle over the middle range of
the data in both cases. From the plane strain slip line field for a sharp
crack in Fig. 21, it would appear that large strains can occur directly in
front of the crack only if the tip is rounded. Thus crack opening displace-
ments are indicative of the size of the highly strained region in front
of the crack, so that a growth rate per cycle roughly comparable in size
to opening displacement is not unexpected. Still, the general trend of
growth rate data shows clearly that the growth per cycle is not directly
proportional to crack opening displacement, as required in Dr. Laird’s in-
terpretation. A length parameter characterizing the material must enter as
discussed in the last section of the paper.





