J.R. Rice, "Stresses Due To A Sharp Notch in a Work-Hardening Elastic-Plastic
Material Loaded by Longitudinal Shear", Journal of Applied Mechanics, 34, 1967,

Stresses Due to a Sharp Notch in a
Work-Hardening Elastic-Plastic Material
. r.mee § Loaded by Longitudinal Shear

Assistant Professor of Engineering,
Brown University,
Providence, R. I

e aME A work-hardening elastic-plastic stress analysis is presented for a sharp notch or, as a
em.

limiting case, a crack perturbing a remotely applied uniform stress field. Mathematical
complexities are reduced through considering the kinematically simple case of antiplane
longitudinal shear deformations and by employing a deformation- plasticity theory
rather than the more appropriate incremental theory. Consequently, a general solution
1s available vakid for any relation between stress and strain in the work-hardening range,
so long as the remotely applied stress does not exceed the initial yield stress. When a
power law relates stress to a strain in the work-hardening range, the deformation theory
solution is also the correct incremental solution at low applied stress.levels causing yield-
ing on a scale small compared to notch depth. For cracks, the near crack tip strain field
is shown to depend on loads and geometry only through the elastic stress intensity factor
when yielding is on a small scale, and the elastic-plastic boundary and lines of constant
strain magnitude are circles. Extensive numerical results are tabulated for a crack,
45 deg V-notch, and 90 deg V-notch in power-law-hardening materials, and exhibited

graphically for a crack.

Introduction

CCURATE determinations of stress and deformation
fields near various stress concentrators, and cracks in particular,
employing realistic stress-strain relation are of fundamental im-
portance for the mechanical description of fracture and fatigue.
Obvious mathematical difficulties generally accompany such de-
terminations. However, a class of problems involving cracks or
sharp notches in planes of work-hardening elastic-plastic ma-
terials, subjected to uniform remotely applied stress fields, may be
treated in a straightforward manner through the methods pre-
sented here, provided one is content to introduce certain simplifi-
cations which considerably reduce the mathematical complexity.

The first of these is kinematical in nature: We consider the
antiplane case of longitudinal shear involving displacements only
in the direction perpendicular to the cracked or notched plane.
Letting the z and y-axes lie in the plane, with the z-direction
perpendicular, means that the only nonvanishing displace-
ment is the z-direction component, w = w(z, y). As a con-
sequence, all strain components vanish identically except for the
longitudinal shears v,, and v,,. Introducing the notations 7y, =
Yz: and ¥, = v, these are given by

Y. = ow/oz, ¥, = dw/dy (1)

A compatibility equation for the strain results by observing that
9%w/d2dy must be independent of the order of differentiation, so
that

(07/3y) — (97,/0z) = 0 2)

Within the context of the usual assumptions of an isotropic ma-
terial and small deformations, all stresses vanish except the longi-
tudinal shears 7, and 7,,. With notations 7, = 7, and 7, = 7.,
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the only equation of equilibrium not identically satisfied by
vanishing stresses is

(9r,/0x) + (o1,/0y) = 0 3)

When equations (2, 3) are complimented by a stress-strain rela-
tion, generally nonlinear equations result which must be solved
subject to appropriate boundary conditions. It is expected
that solutions obtained, while valid for the antiplane case of
longitudinal shear, will shed some light on the analogous and more
important problems involving in-plane deformations due to ten-
sile loadings. In particular, the results of elastic crack stress
analysis reported by Irwin [1, 2] and Paris and Sih [3] indicate
that the stress intensity factor (coefficient of a characteristic
inverse square root crack tip singularity in stresses, which is re-
lated to Irwin’s energy release rate [1]) of a longitudinal shear
problem usually approximates closely, and sometimes gives ex-
actly, the factor for the tensile problem having the same geometry,
when the applied shear stress term appearing in the stress in-
tensity factor formula is replaced by a term giving the applied
tensile stress. Further, McClintock and Irwin [4] have pointed
out that several important observed features of plastic influence
in -tensile crack extension are predictable from the perfectly
plastic solutions for longitudinal shear cracks as provided in [5-8].

The second simplification introduced for the treatment of
cracks and notches in work-hardening materials has to do with
the constitutive relation: A deformation plasticity theory is em-
ployed relating stress to total strain in an isotropic fashion, so
that directions of the principal shear stress and strain coincide.
An incremental theory is clearly more appropriate; however, ap-
preciable errors are not expected for monotonic loading and, in-
deed, for the case where a power law relates stress to strain in the
hardening range, it is shown that the deformation solution is also.
an incremental solution when yielding is on a small scale. It is
noted that deformation plasticity solutions also provide solutions
for nonlinear elastic materials. The stress-strain relation is
specified by a function 7 = 7(7) relating principal stress and
strain, defined by

=2+ = 4)

! Numbers in brackets designate References at end -of paper.
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Fig. 1 Stress-sirain relation

A typical hardening stress-strain relation is shown in Fig. 1(a),
where a linear elastic relation prevails up to an initial yield stress
7o, With corresponding strain 7, and 7o/vo = G = elastic shear
modulus. A more general relation appropriate, say, for a non-
linear elastic material is shown in Fig. 1(b). Noting from Fig.
1(c) that v,/ = 7./7, component forms of the stress-strain rela-
tion are

7-(—727 T][ = ’Y]/ Z(—’Y_) (5)

Y Y

z z

In terms of boundary conditions, these imply, for example, that,
if 7, vanishes on a portion of the boundary, so does v,.

Basic Equations in Strain Plane

The nonlinear equations governing longitudinal shear problems
may be reduced to linear equations by regarding physical coor-
dinates as functions of the strains or, equivalently, of the stresses.
That is, 2 = 2(V,, vy) and ¥ = Y(Va, vy) or z = z(7,, 7,) and
y = y{T,, T,). Noting that

oz ox
— d'Yz +

de = R
Y ov, T
ox [0v, OY,
= 2 (e gy 4 e 6
>y, ( s + o dy) (6)
2 [, 7,
L (R gy Dy
+a7,,<az Tt oy W

with a similar equation for dy, and equating coefficients of the
arbitrary dz and dy, one has a system of four linear equations for
the partials of (v,, v,) with respect to (z, y), with coefficients in-
volving partials of (z, y) with respect to (7v,, 7v,). Solving for the
partial derivatives involved in the compatibility equation (2) and
substituting, there results in view of the homogeneity of (2)

oz dy
-l =0 @)
oY 0%

at all points of the strain plane where the Jacobian of the trans-
formation is nonzero (i.e., at all points where a finite area or arc
of the physical plane does not map into a single point in the
strain plane). Similarly, working in terms of stresses, the equi-
librium equation (3) becomes

0 0
=+ 20 @®)
or,

or,

Such transformation techniques have been employed for per-
fectly plastic solutions in [5, 7, 8] and by Neuber [9] in obtaining
some solutions for nonlinear materials which will appear as a
limiting case of our results in a following section. Similar tech-
nigues are employed in the hodograph method [10] of fluid
mechanics which reduces the nonlinear equations of two-dimen-
sional compressible flow to linear equations in terms of velocity
components. Clearly, the success of the transformation formula-
tion depends on the ability to convert boundary conditions for the
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problem of interest from the physical plane to the strain plane,
and usually on the existence of a one-to-one correspondence.

It is convenient to cast the general results in a vector notation
so that governing equations may be easily transformed {o the
strain coordinate system most appropriate for a given problem.
The nonvanishing components of stress and strain form two-
dimensional vector £ and y given, respectively, in Cartesian com-
ponents by

Y = Yo + Viiy 9

T = TG, + 7,

with (i, i,) unit vectors in the (z, y)-directions, and 7 = Icl,
¥ = |y|. Gradients V, and V., are defined in the stress and
strain coordinate systems, and in Cartesian form

o 0 . 0

o]
. T P 1)
Vr Iz aTz + L 2 1',, v')' fz a’yz + Ty ayy ( )

Denoting by
(11)

the position vector of a point in the physical plane, compatibility
(7) and equilibrium (8) equations become

Vi X. =0, Ver=20

r = i, + Yiy

(12)

The gradient in the stress coordinates must be converted to that
in the strain coordinates through the stress-strain relations. For
corresponding changes (dy, d<) in the vectors (v, €), it is re-
quired, from the definition of a gradient, that

de-V, = dY’v'y

Stress (solid line) and strain (dashed line) vectors and small incre-
ments are pictured in Fig. 2(a), and our use of a deformation
theory requires that vectors (v, ¥ + dv) be colinear with (z, © +
dz). With reference to the blown-up Fig. 2(b), the vector dy is
resolved into the sum of a vector in the direction of dv and a vee-
tor in the direction of 4. Due to the geometrical similarity, the
contribution to dy in the direction of dt is (y/7)d%s. From the
geometry in Fig. 2(b), the magnitude of the contribution in the -
direction is, to the first order, dy — (y/7)d7r. As v/v is a unit

(13)

=UNIT VECTOR

<IN

dts

sy
(a) (b

Fig. 2 Stress and sirain vectors and their increments
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vector in the +-direction, in vector form this is [(dy/dT) —
(v/t)(y¢/v)r. Note that (dr, dy) are not in general equal to
(|dx], |dvy!) but are rather the changes in scalar lengths of (%, 7).
Since 72 = %%, dr = (%/7)-dv = (v/7v)-d=, and the yy-direction
contribution may be written as

ﬂ_l)l(l.d,,)
dr T/ v \7Y

Summing the two contributions,
dy = {d + (T L1l 1) u (l~dc)} (14)
dr Y \v

Substituting for dy in equation (13), which relates the gradients,

TEE-) Gy o

¥y \v dr
Since this equation must hold for arbitrary values of d=, the stress
and strain coordinate gradients are related by, after noting r =

7(y) from the stress-strain relation,
Y () Y
Ve=—"-49Vy + — |: 1:| (—'V )} (16)
MR G0 { Y vr'(Y) v 7
Thus the governing equilibrium and compatibility equations of

(12) are given entirely in strain coordinates by
Vy Xr =10 17)
7(Y)

xifx, =
/(%) 1] v [(7 V’)'] 0 a8

These may be reduced to a single equation by noting that (17)
implies the existence of & scalar potential function ¥ = ¥(y) such
that physical coordinates are given by

1= V.

and (17) is satisfied identically. The remaining equation (18)
then requires Y to satisfy

&V, = }d«:-{v7 +

v'y" + [

(19)

7(Y) ] Y [(T ) -l
VW + I: - 1] —-V v =0 (20
M| S =1 | (V) (V| =0 o)
. . . 7(v)
Note that, for a linear elastic material, 7(v) = Gy and —; =
Y7 (v)

so that (20) reduces to the Laplace form V. = 0. In Cartesian
strain coordinates, ¥ = ¥(v,, v,) and the governing equations
are

T =0¢Y/dv, y =Y/, (21)
02
v o _,__[1(17) l:l
ov.2 0,2 v LaT(y)
Y 4 i
X ['y, Sy T g o Em*] =0 (22

The differential equation (20) takes a considerably simpler form
when a polar ¢oordinate system is employed in the strain plane,
consisting of the magnitude, -, of the principal shear strain and
the angle, ¢, measured positive counterclockwise, between the
principal shear (or stress) direction and the y-axis, as in Fig. 3.
In this coordinate system, With radial and angular unit vectors
- . 1 o) .

(i ig), ¥ = Viyand Vo = iy — b’y + - ~ ip — o Taking ¥ = (v,
@), coordinates of the position vector r referred to radial and
angular strain directions are given by (19). Converting these to
Cartesian form,

k4 eos¢v>b_xl/v
oy v ¢’

T = —singp—

Y _sing Y

y—cos¢a7 v o6 (23)
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Fig. 3 Polar strain coordinate system; principal shear strain and angle

with y-axis
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Fig. 4 Problem considered and nolafion; arrows denote direction of strain
vector at typical points
Equation (20) governing ¥ becomes

(y) % | 1 oY
yri(y) oyt vy oy

12y
72 a¢2
We shall find this polar form particularly convenient for treating
cracks or sharp notches in elastic-plastic materials, so long as the
plastic region does not completely traverse the notched plane.

To derive an expression for displacement, w, in terms of the
potential function, ¥, note that

dw = vy-dr = d(y-r) — dy-r (25)

Since r = Vi, dy'r = dy- V¢ = d¢ is an exact differential
and (25) integrates to

w =Y V¥ — ¥+ const

=0 (24)

(26)

Sharp Notch in a Semi-1nfinite Plane

A general formulation is given here for the problem of a sharp
edge notch of angle 2« and depth ¢ in a semi-infinite plane, and
subject to the remotely applied stress 7., as shown in Fig. 4.
Solutions to this problem in the perfectly plastic case have been
given in [5, 7, 8]. It is noted that symmetry allows a solution to
serve also for the case of an internal double-ended notch (mirror
image of Fig. 4 added on) in an infinite plane, as 7, and thus 7y, =
w/dz vanish along the center line. This correspondence is only
approximate for the analogous tensile case. Although the formu-
lation is valid for an arbitrary nonlinear stress-strain law and
applied stress, a solution has been found only for stress-strain laws
of the linear elastic work-hardening plastic type, as depicted in
Fig. 1(a), with the remotely applied stress, 7o (or strain, v.) less
than the initial yield stress, 7o (or strain, 7o) so that the elastic-
plastic boundary (dashed line in Fig. 4) does not extend to in-
finity. Interestingly, this solution may be obtained in a com-
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Fig. 5 Strain plane mapping of physical plane; corresponding points,
boundary conditions, and governing equations shown

pletely general manner which does not rely on the assumption of
some explicit type of stress-strain relation, 7 = 7(v), in the work-
hardening range.

The geometrical shape of the strain plane image of the physical
plane in Fig. 4 is shown in Fig. 5 and is determined by noting the
direction of the strain vector at various points along the boundary.
Note that, along AB, v, = ¢ = 0. Boundary conditions at the
stress-free corner, B, require 7, and <, to vanish there; point 4
is at infinity, where strains are uniformly v, = 0 and v, = Ye.
Thus A B appears in the strain plane as the segment of the v, -axis
between zero and Y.. Along the notch boundary BC, ¢ =
37 — a. As the strain vector must abruptly change direction at
point C, a singularity is required and BC makes an angle « with
the negative v -axis in the strain plane, with point C at infinity.
Similarly, the maps of DE and CD are found. The identification
of AB and DE with top and bottom sides, respectively, of the slit
in the strain plane in Fig. 5 is made by noting from Fig. 4 that v,
is negative at small distances from AB and positive at small
distances from DE.

To determine boundary conditions in the strain plane, note that
¢ = —a along AB and DE. Recalling as in (19, 21, 23) that
physical coordinates are related to the gradient of a strain po-
tential, ¥,

_ 1w

L2 Y]
Y o

= — o
. a 27

=0

’Yz=0 -
on AB and DE.  On the notch boundary BC, one has y + 2z tan

a = 0. Substituting for z and y from the polar form (23) and
setting ¢ = {7 — a, one obtains

(28)

onBC. Similarly,
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oy

=0
26|, _

ki
—-§+a

(29)

on CD. Noting that ¥ is governed by (20, 22, or 24), the com-
plete boundary problem is now formulated in the strain plane.
The slit geometry makes solution for an arbitrary nonlinear 7(7y)
and arbitrary 7. generally difficult. However, when an initially
linear elastic material is considered as in Fig. 1(a), ¥ is governed
by the Laplacian form V.2 = 0 for ¥ < v, (Y = 7. being the
map of the elastic-plastic boundary); if v, < v so that the slit is
entirely within the Laplacian region, the powerful methods of
analytic function theory may be employed to handle this other-
wise difficult geometry.

The solution for y is reduced to determination of an arbitrary
analytic function in the elastic region (v < 7o) through succes-
sive use of a conformal transformation, introduction of an image
plane, and reduction to a linear Hilbert arc problem. A separa-
tion of variables technique is employed in the plastic region (v >
Yo), expressing Y as an infinite sum of solutions to (24), with con-~
stant coefficients to be determined. Finally, the two solutions
are matched on the elastic-plastic boundary (y = v,), leading to
an infinite system of equations for the various unknowns, these
being solved through series developments in the ratio of remotely
applied strain to initial yield strain. Details of the caleulations
follow.

Solution in Elastic Region (v < v,)

Since V.2 = 0 in this portion of the strain plane, ¥ may be
represented as the imaginary part of an analytic function of 7y, —
Y. = ve*®. A conformal transformation { = £ + ip = {(v, —
17y.) allows ¢ to be represented as ¢ = Im {#({)} and insures that
normal derivatives appearing in boundary conditions transform
to normal derivatives in the {-plane. The transformation

) Yy — N\ (7)“ o
= +in = — = | — AP 30
£=4¢ ? ( Yo ) Yo ¢ 0)
with A related to half notch angle, o, by

T
T — 2

(31)

maps the slit sector comprising the elastic region in Fig. 5 into a
slit unit semicircle in the {-plane as in Fig. 6, where the slit ex-
tends on the {-axis over 0 < £ < s, s being the dimensionless

applied loading
G -G
§ = —_ = _—
Yo To

Physical coordinates are given by first derivatives of ¥ with

(32)

LPLANE

oy Y
oy N°

Fig. 6 Conformal mapping of elasfic region of sirain plane onto split
unit semicircle in {-plane; image region shown by dashed lines
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respect to v, and v,. In terms of {, with ¥ = Im {A({)},
Cauchy-Riemann conditions may be shown to lead to

- L o_ %, —i¢<1 oY ,
z+y = asz”ay,,“’ S 2% Tioy)
A o Y .anl/)
EEARPR TS YN
wi’ (bn + Y: (33)

A
- N =1/,
” 4 h'({)

Using (33) to relate derivatives in the strain plane and {-plane,
boundary conditions (28) and (29) on the inclined lines in Fig. 5
become, on the y-axis in Fig. 6,

k4

o

and (27) on the slit in Fig. 5 becomes, on its map along the £-axis
slit in Fig. 6,

2

o7

0 (34)

g=0

_M E=O=D/A g

6"\ 0<€<s
=

(35)

Thinking geometrically of Y as the height of some surface
measured perpendicularly to the & #-plane, condition (85) corre-
sponds to lowering the surface on the top side of the slit and rais-

. . . .0
ing on the bottom side through applying the rotation élj J
£=0

about the £-axis, while (34) requires that the rotation about the
7-axis, at points on this axis, be zero. This same distortion (and
thus an identical solution) is obtained by considering a circular
region identical to that in Fig. 6 for £ > 0, but containing a slit
over the length —s < £ < +s with the same rotation of the
Y-surface at £ as at —£ Thus introduction of an image slit,
shown by the dotted line in Fig. 6, with (dy/09)(§, 0) = (dy/07)
X (—£, 0), identically satisfies (34).

Extending h({") analytically into £ < 0 and noting 2(0¢//29) =
R'(¢) + R'({), boundary conditions along the slit and its image as
applied to the top side lead to

WO + @~ = S H=0-DNa, s <E< s

(86)

with the notations [¢(£)]+, [g(£)] — denoting the values of g({)
as { approaches the £-axis from the top and bottom sides, re-
spectively. Similarly, conditions on the bottom side become

W1~ + @I = 22 [g=0-DAg,  —s<E<s (3D
Subtracting (87) from (36), one obtains
[R(§) — R(EN* = [M(E) — R(E)], —-s<E<s (38)

which implies that A({) — £({) is single valued along the slit and
thus analytic everywhere within the unit circle || < 1, including
points along the slit. But symmetry requires that (dy/2£)(§, 0)
= h(£) — h(E) for1 > |£| > s) be zero; analyticity then requires
r(¢) — k({) to vanish everywhere in the unit circle and A({) =
k(). Thus (36) or (37) becomes

—s<E<s

N + W = 2[5 -0-bg, (39)

Following Muskhelishvili {11], we introduce the function ({? —
$2)"/2, taking on the values ==i(s? — £2)"/2 on top and bottom sides
so that

(& — &)/ * ~ [(E* ~ &)/ h(E)] -

= Zn

0|50/ b — g

—s<E<+s (40)
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As single valuedness of (£2 — s2)'/2 for |£| > s and previous re-
marks on symmetry require the difference to vanishon 1 > |£ | >s,
a particular solution, &,’({), to (40) is given by [11]

Yoo [T (52 — u2)/e|p| DA

(€2 — s1)/eh,(§) = N f p— ¢

du

(41)

The complete solution to (40) is obtained by adding the most
general homogeneous solution, hgy’({), which is simply that ({2
— $2)"/2h5"({) be analytic everywhere in the unit circle. In order
to satisfy symmetry conditions of (¥ /)& 0) = (d¥/01)
X (—§, 0) outside the slit (1 > |£ | > s), this takes the form

€2 — s9"ha"(§) = $9(5)

where g({) is analytic everywhere for |§‘ | < 1 and has a Taylor
expansion containing only even powers of {.

Adding (41) and (42), recalling (33) that physical coordinates
are given by —z + iy = \/¥){*=D/A [B,/(§) + ha'(§)], and
substituting ¢ = (u/s) > for the integration variable in (41),

(42)

—z 4y = % g-(2>\—1)/x(§-z _ s2)--‘/2

A2 — 2

1 22\
X {g(g‘) + % 'Yoa,s(1+}‘)/)\ Q‘__t)—dt} (43)
0

If the material under consideration remained linear elastic for
Y > 7o, (43) would be valid also for all | ¢ | > 1, and the require-
ment of —z + 4y — 0 as { — » (the crack tipz = y = 0is the
point at infinity in the strain plane) would yield g({) = 0. How-
ever, for an elastic-plastic material, g({) must be determined, as
will be shown subsequently, from the requirement that z and y
be continuous functions of vy and ¢ at the elastic-plastic boundary

Y = Yo

Solution in Plastic Region (y > 7v,)

Equation (20) for ¥ holds in the plastic region with 7 = 7(v)
being the work-hardening stress-strain law. Equations (28, 29)
suggest the polar form of equation (24) as convenient, and a solu-
tion through separation of variables is

¥ = > Difi(y) sin (26 — 1)\ (44)
k=1

with A defined by (31) and fi.(y) satisfying

2k — 1)2\2
7(y) @™ =0 @)

¥7'(Y)

1
Fe" () + 5 fi' () —

with the conditions imposed that
L) =1,  fi'(2)=0

The latter of (46) is required as z = y = 0 (at the crack tip) for
infinite strains; the first is imposed merely to make the functions
fi(y) definite. :

Quite general forms for 7(7y) are permissible and, indeed, it is
not necessary that the slope 7/(y) be continuous in the work-
hardening range. The requirement of continuity of z and y as
functions of 7y and ¢ requires that, in addition to satisfying (46),
fi(v) and £.’(y) be continuous at points of discontinuity of 7/(y).
It is of interest and of particular importance for fracture me-
chanics applications that, for a crack [A = 1 by (81) as @ = 0],
a solution may be found for fi(y) in terms of a single quadrature
involving 7(y). However, the completion of our solution for the
unknowns Dj, will be seen to involve only the set f3’(vo) and to be
otherwise independent of the functional form of fi[y]. This
permits the finding of a general solution valid for any arbitrary
work-hardening stress-strain relation.

Equations (23) for physical coordinates may be put in the
compact form

' (46)
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—z 44y = "“"(1 i +1 bzﬁ) (47)

Y 9¢ oy
Evaluating the derivatives on the elastic-plastic boundary v = v,
and recalling that fi(ve) = 1,

-—p ©
B | ‘327 21 D.{[(2k — 1)\
k=

+ Yol (7o) ¥ TIN L [(9F — 1N — ofi/(Yo)]e ™ i@k — DS}
(48)

Matching of Solutions

Expressions for physical coordinates have been obtained for the
elastic (v < 7o) and plastic (¥ > 7o) regions of the strain plane.
We now determine the unknown function g({") and constants Dy
involved by requiring these solutions to agree on the elastic-
plastic boundary ¥ = 4o. Consider o = ¢™9, which is the value
of {on v = . Equating (43) with { = o to (48) and solving
for g(o) resultsin

1 (1 _ t2)\)‘/2dt

2
= — AN/ -2 - 7 -
g)= Yoas (1)
g(o) T 0 o 1 (820‘_2)t2)‘

1 1 e
+ 55 = @ S D12k — D + voh(yo)] oD
k=1

+ [(2k — DN — vofi' (vo)lo %} (49)

as the required continuity condition. We observe that the ex-
pression on the right contains both positive and negative powers
of o2; but it is recalled that g({’) is analytic in the elastic. region
|§‘I < 1 and thus its boundary value, g(¢), may contain only
nonnegative powers of o2, Requiring that coefficients of o2,
o4 ..., 07%, ... vanish, one obtains a coupled infinite system of
linear equations for Dy, Dy, . . ., Dy, . ... Once these are deter-
mined, substitution into (44), together with (47), gives the
physical coordinates having strains in the plastic region. Substi-
tuting D; back into (49) and replacing ¢ with ¢, ¢({) is deter-
mined so that (43) gives physical coordinates having strains in the
elastic range. A closed-form method of solution for D, has not
occurred to the author, and therefore the development of solutions

in powers of the dimensionless applied load, s = (Yo/¥o)* =
(To/To)", is employed.
We represent g({) in the form
1 «©
90 = =5 Yoas VA 3 Gy( e (50)

i=1

where each G;({) is independent of s and analytic in the unit

circle |§‘ | < 1. Each constant coefficient D, is represented as
MyeasTHN/A
Dy, = dy,, ;8% 51
P20 — DN — vl (1) A Z wi 6L
with each d;, ; independent of s, and the notation
’ 2k — 1A !
C, = ( A+ Yol (7o) (52)

2k — A — Yofi' (7o)

isemployed. The integral appearing in (49) is Laurent expansible
fors < 1, and we let
1 (1 t2k)1/ dt

B —2je2i = —
Z s 1 — (s? 0‘2)t27‘

i=0

(63)
so that each B, is given in terms of gamma functions by
(7 +5)
A7l (J +on t )
(54)

4 1
- f ML — 12NVagy =
= ),

™

Bj=
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With these substitutions, (49) becomes

<« [-~]
Z Gi(o)st = _Z B2 +gt
i=0

j=0

+ (1 — sto-2)/> Z §% {Z dy, ;[Cro?=1 U—zk]} (55)
k=1

i=0

and we solve for the unknowns by equating coefficients of each
power of s. Equating coefficients of s% one has

Go(a) = —Byo~2 + Z Ao [Cro2®—D L g—2%]
k=1

(56)

Since negative powers of ¢ must not appear by analyticity of
Go({), the solution for dx, is

dio = By
(67)
dro = 0, k>2
and substituting back into (56),
Gy($) = BoCy (58)

Next, equating coefficients of s2, (55) results, after using (57), in

Gi(0) = —Bio~* — ‘%0_2{30[01 -+ 0'_2]}
+ E A1 [CR3ED - o—2%]  (59)
E=1
Again, since negative powers must not appear,
diy = %Bocl
dz.1 = Bl + ‘%‘Bo (60)
dia = 0, k>3
and inserting into (62),
Gi(§) = FBCL? + (Br + £B0)C:{? (61)

Continuing in this manner, Jz.e and Go({), di,s and Gs({), and
so on, may be determined. However, a recursive scheme may be
developed to solve for G;({) and d;,; in terms of dp, 1, dq,j-2, and
soon. Let

> Byoiws? =1 — (1 — st¢2)?

p=1

Bi=1/2, Bo=1/8 PBs=1/16, B4 = 5/128 (62)
1 (2p—3)!

b=y P27

the coefficients 8, being obtained through the binomial theorem.
When this series is inserted for (1 — s?o—2) 2 in (55) and the
coefficient of s?7 is identified after multiplying the infinite series,
there results, forj > 1,

Gi(o) = —Bo2ity Z dy, ;[CR2=D 4 g2
k=1

k=1

i—1 o
- B {z s (Cuo =140 1. a-2<k+f-*'>]} (63)
=0

Now, after a considerable bit of rearrangement of the summa~
tions involved, it is found possible to identify the coefficient of
each negative power of ¢ in the right side of (63). Further, upon
setting these coefficients equal to zero, it is found possible to solve
foreach dy,; (k = 1,2, 3,....)In terms of d,,;_1, dr.jg, » + «, dro
(r=1,238,....). The resultis a recursive solution, valid for
J 2 1, so that, starting with the set d,,, as given by (57), one com-
putes the set d,.; then starting with two sets d;, and d,,;, one
computes the set dy2; and so on. The recursive equations are
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=1
di; = Y, BisidiiiCis
iZo

i=1
dog = D, Biiejris
i=jF1-k
i—k
+ > Biitlirn-iCipps, for 2< k<7 (64)
i=0

i—1
dips = Bj + Z Bi—iditivi
=0

-1
> Bi-idrjpig, for j+2LE< o
=0

dy; =

A very useful fact, since series solutions for Dy, in terms of dy, ;
(51) must be finitely terminated in performing computations, is
that

g =0, if b>j+2 (65)
Observe from (57) and (60) that this is true for dio and dey. It
is then readily induced from the last recursive formula of (64)
that (65) holds for all j. Suppose one is willing to neglect, in
comparison to unity, terms involving s raised to a higher power
than 27 [or, by (82), Y«/Y0 to a higher power than 2\J] in ex-
pressions for D;. Then, by (51) and (65), replacing by zero all
neglected higher-order terms,

AyoasLHN/A

De= =G — N — 7ol (70) ;.

E koS7
k=Lz“
E=J+2,J+3...

wd +1 (66)

Dk=0,

Thus a solution for physical coordinates corresponding to a given
strain is given accurate to within an error of order (Yo/ve)2*W+1
by retaining the first (/' + 1)-terms in equation (44) for ¥, cal-
culating the coefficients according to (66) from a finite number of
dy,; as obtained recursively from (64). It is also of interest to
note, after reviewing earlier work, that a solution accurate to any
arbitrarily chosen order satisfies all boundary conditions and
governing equations in the strain plane in Fig. (6), except that
continuity along the arc ¥ = 7, is satisfied only to the chosen
order. In terms of the physical plane in Fig. 4, this means that
stress-free boundary conditions along the notched surface are
exactly satisfied and stress equilibrium, strain compatibility, and
stress-strain equations are exactly satisfied in the elastic and
plastic regions of the physical plane corresponding to the maps of
regions ¥ < 7 and Y > 7, in the strain plane. The approxima-
tion of (66) appears in the fact that physical coordinates carrying
given strains are correct within an error of order (Yaw/7o)2MJ 1),
and a disparity of this order appears in the location of the elastic-
plastic boundary in the physical plane as computed separately
from solutions for the elastic and plastic regions and, thus, in the
true location of the boundary.

The analytic functions G;({) appearing in (50) for g({) are
obtained from (63). After recognizing that the solution for dy,;
has removed all negative powers of ¢, one obtains, using (65),

G(g‘) = Z dq+l.1 q+lg‘aq

g=0

1
+ Z (Z :3.7 sz+p+1~t zog+p+1_;> g‘ P,

1=0

=1 (67)

so that G;({) is a polynomial of degree 2 in {.

Solution to Within Error of Order s!?

Expressions for D; neglecting ferms of higher order than s are
given subsequently, so that physical coordinates corresponding
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D3=

to given strains in the plastic region may be computed from (45)
and (48). For a crack, « = 0 and A = 1 so that the error in
physical coordinates is order (Y./ve)!?; for a 90 deg notch
o = m/4and A = 2 so that the error is order (Yo/%0)?. Solving
fordy,; (7 = 1,2,...,5)from (65) and inserting into (66),

AMoasLHN/A
A — Yo' (Vo)

+ % [(31 + %Bo> C: + 30013] s

1
16

1 1 3
+E|:(Bz+ EB +8Bo)03

1
+ E (B1 + 2Bo)CiC2 + %30015] 810}

D= — { o + — 300182 + = 3001284

5
+ (31 + 2 Bo) C:Cr + BoCyt :l

Aoas@HV/A {( 1 ) 3
AV = (B + = B, ) s* + 2 BiCis*
3\ — Yof2'(Vo) '+ 2 7° &+ g~ 18

3 1 1 3
+ 16 BCy2%s® + r [(Bl + Py Bo) C: + ZBoc'l“:I s8

3 3
+ = 5 [(Bl + - 2 Bo) CiC: -+ Boox‘:l 810}

)\’Yoas(l—")‘)/)‘ ( 1 3
=  Z|B;+—B 2 4
5)\_701_3,(70) 2 + 9 1+ 8B0 §

D= —

+ 1%300135 + 3001288 (68)

15 2
+ — 198 [(Bl + = Bo) C: + '3—30013] Sm}

MyoasLHN/A

Di = —
TN — yofs (0)

1 3 5
el 2B el 6
X{(Bz+232+8 1+1630)8
35 35
2 3 2 2,10
+ 198 BoCls + 256 BoC1 'S }
)\'Yoas(l"')‘)/)‘ ( 1 3
- B — B — B
N — Yofs'(vo) oF 2 ° + g

5 35
= 10
+163 +128 ) + Bost}

D

MyoasHN/A

1 3
Y8 " (g, +—Bi+ =B
11)\—'70f5'(70)( ot 2 4+'8 !
5 35 63
— _—— —_— 10
+1632+12SBI+25630)8

Dk= O,

Comparing these equations with (66), the d,; may be read off
so that g({) may be computed from (50, 67) to the same order
of accuracy, should the solution in the elastic region be desired.
Also, the accuracy of the plastic region solution may be improved
through adding on terms of order 12, s14, and so on, after comput-
ing the required dg.s, dz,7, and so on, from (64); however, the fore-
going equations are sufficiently accurate except when the re-
motely applied strain, Y, is very near the initial yield strain, o,
80 that s is near unity (all of our series diverge at s = 1, asmay be
inferred physically from the fact that the elastic-plastic boundary
then extends to infinity).

kE=17,89....

JUNE 1967 / 293



small-Scale Yielding Near Gracks and Notches

When the dimensionless remotely applied stress, s = (ro/To )%,
is small in comparison to unity so that s? is negligible, a state of
small-scale yielding exists for which the dimensions of the plastic
gone are negligible in comparison to notch depth, a. In this
case, the solution given in the last section reduces to that offered
by Neuber [9], with the important difference that the solution
of [9] did not clearly relate a constant introduced to the applied
load and notch geometry. Neglecting all terms in (68) of order s?
or higher in comparison to unity, one has

>\I)loaBos(1+x)/X
D= N
= Yofi'(v0) (69)
Dy = 0, k=2234...
so that, by (44),
MYoaBosLHN/A :
g = -0 ily) sin Mo (70)

TN — % (Y0)

Thus, through (23), physical coordinates (z, ) in the plastic re-
gion corresponding to a given strain, -y, with direction at angle ¢
with the y-axis, are for small-scale yielding

_ MyoaBosHN/A [xfl(v)
TN =T Loy

z cos ¢ cos A

-+ fi’(7y) sin ¢ sin M;]
(71)

_ )\'YaaBos(l-H\)/)‘ l:)\fl('Y) sin ¢ cos A

A - Yoft' (o)

— fi’(y) cos ¢ sin )\¢:|

Setting ¥ = o, these give parametrically, in terms of ¢, the
position of the elastic plastic boundary. Noting that, on the
z-axis ahead of the notch tip, one has ¢ = 0, strain may be re-
lated to distance from tip by the first of (71).

One may inquire as to which, if any, bardening stress-strain
relations 7 = 7(¥) employed in our deformation plasticity theory
will lead to a solution which is also correct for an incremental
theory. This is the case if, at points in the plastic zone, the direc-
tion of the strain vector is independent of applied load. This
means that, upon solving for ¢ in terms of « and y, the resulting
expression is independent of s. Examining the small-scale yield-
ing solution of (71), one easily justifies that this requirement is
equivalent to having ¢ depend only on the ratio z/y so that,
conversely, the ratio z/y from equations (71) must be independent
of 7. One then may show that z/y does not depend on 7, if, and
only if, fi(y) is proportional to some power of . Substituting
into (46), one finds that the small-scale yielding solution (71) is
an incremental plasticity theory solution only if the work-harden-
ing stress-strain relation.is of the form

Y

b
7(Y) =79 (——) , for v>v (72)
Yo

Clearly, any stress-strain relation leading to agreement with in-
cremental theory when yielding is not on a small scale must also
agree for small-scale yielding, so that none but power laws of the
form (72) has to.be considered. Upon examining equations of
the last section, one finds agreement beyond the small-scale yield-
ing occurs only for N = 0 (the case of perfect plasticity for which
the present solution may be shown to agree with those of [5, 8])
and N = 1 (the linear elastic case). However, as will be pointed
out subsequently, the dominant notch tip strain singularity de-
pends only on fi("Y) and, although agreement with incremental
theory does not oceur everywhere in the plastic zone for N < 0, 1,
the dominant singular strain term does give ¢ to be independent
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of s. Thus a good approximation to an incremental solution is
expected, even for large-scale yielding, when a work-hardening
power law stress-strain relation is employed.

Small-Scale Yielding Near a Crack

When the notch angle & = 0, one has a crack of length @ sub-
jected to a uniform stress field. In this case, by (31), A = 1, and
it is found that equations (45, 46) may be solved for fi("y), which

appears in (70, 71), in terms of a single quadrature. It may be
verified by substitution that the solution is
v ® du 7t du
= — — —_— 73
A0 =2 [ fy ., W(u)] f7 s @)

Substituting this result into (70), setting A = 1 and, by (54),

By=1,
® du .
¥ = —vTes?a I:'y j; uz‘r(u):l sin ¢ (74)
Itis of interest to note [1, 3] that
K, = 7 VTa = 1es \V/7a (75)

is the elastic stress intensity factor for the present crack problem
in the sense that the linear elastic solution has a crack tip stress
singularity of the form

K,

e e —

(76)
Comparing (75) and (74), it is seen that the plastic solution de-
pends on remotely applied stress and crack length only through
the square of the elastic stress intensity factor. It is now shown
that the small-scale yielding solution for any longitudinal shear
crack problem, involving loads symmetrical with respect to
the crack line, depends only on the elastic stress intensity factor
appropriate for the particular crack and external boundary geome-
try and manner of load application considered. The complete
linear elastic solution to such problems containg [1, 3] a singular
term of the form given by (76) to which other terms, all vanish-
ing at the crack tip, must be added for a complete solution. As
the plastic zone is presumed negligible in comparison to geo-
metric dimensions, on the scale of lengths comparable to plastic
zone dimensions, the crack appears to be semi-infinite, as in Fig.
7(a), and the appropriate boundary conditions are that the elastic
solution (76) is approached for large ]x + zyl The map into the
strain plane of the semi-infinitely slit physical plane is shown in
Fig. 7(b), along with appropriate boundary conditions of dy/0¢
=0at¢ = =m/2.

Since 7, — 7, = (ro/7ve)Ye™ in the elastic region v < v, and

L1 oY Y . .
—z+iy=e¢"% (= - +i_= ) th totic condit:
ztiy=e ” bd)—i—zzw), e asymptotic condition
K,
— - 0 3 7
T G e @ Al e D
is equivalent to
3Y  |a
P
SINGULARITY. ‘\\\
\ .
Ne ) %
R 7o
/
/
_’//
v I,
op ~ [°®
oy

(a) Physical plane (b) Strain plane

Fig. 7 For small-scale yielding near a crack tip
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9
1, o9

Y 09 oy
Integrating (78), it is then required that ¥ have a singularity of
the form

sz,yna

2oy ? (78)

e~ as v —0

sz’yoa sin ¢

79
2w 7o? Y ( )

¥ 70

A solution for ¥ satisfying the governing equation (24), boundary
conditions in Fig. 7(b), and having the required singularity is

K27 {1 ¥ ® du .
=) L2 ——— —1|Lsing,
= {v * w[ v | ) }} ¢
v <7 (80)
Yo ®  du .
= —— Kw’ 0 in @, >
v=-2 [7 L uzT(u):Is é 1>

is the solution. When the value of K,, is that given by (76), the
last of equation (80) is identical to (75), and the generality of de-
pendence of small-scale yielding solutions on elastic stress intensity
factors is established. This sort of result always has been tacitly
assumed in Irwin’s [1] approach to fracture mechanics; a similar
result for a tensile yielding model has been demonstrated by Rice
in [12].

}[i}quations (23) combined with the last of (80) yield, for physical
eoordinates corresponding to strains in the plastic region,

2
Ky {——WTO cos 2¢

® = omre? \yr(7)
-+ I:z‘YoTof
Y

K,2 YoTo .
——— sin 2
2r7o® Y7 (Y) ¢

du YoTo
wrtw) 77(7)]} B

y =

Subtracting the term independent of ¢ from the first of (81),
squaring both, and adding, the equations of lines in the plastic
region along which the strain and stress have the constant mag-
pitudes v and 7(7v) are circles

[z — X(¥N*+ 92 =

centered at the distance

(82)

[R(v)]*

CRACK Y

_ K TR
xm = 2702 [2%7.0]; utr(u) ‘YT(’Y):] ®3)

ahead of the crack tip, and with radius

_ sz 'YOTO
2wre? yr(y)

RB(v) (84)

Similarly, the elastic-plastic boundary is also a circle with center

and radius
° d
2701.0 f 2_?}, —
o Y T(u)
(85)

It is of interest to observe that the radius of the plastic zone is
independent of the work-hardening stress-strain relation for
small-scale yielding. The plastic region extends a distance X (y,)
+ R(7,) ahead of the crack tip on the z-axis and a distance R(¥o)
— X (7,) behind. Division of equations (81) leads to

K2
1 = id
:]’ E(vo) 2rTy?

K2
X(m) = 5=, [

¥

m = tan 2¢

(86)
so that, if a given point (z, y) has a strain magnitude 7y according
to (82), the corresponding angle ¢ between the strain vector and
the y-axis is one half of the angle made with the z-axis by the line
from (X(7v), 0) to (z, y). These geometrical properties of the
plastic region strain field are shown in Fig. 8, where the elastic-
plastic boundary appears as a dashed-line circle and a line of con-
stant strain magnitude 7y(>%.) as a solid-line nonconcentric
circle. Physical coordinates corresponding to strains in the elastic
region may be computed from the solution for ¢ in the first equa-~
tion of (81). Omitting details of calculation, one may show that
the resulting relation between stresses and coordinates is

K,
2mlx — X(vo) — iy}

Ty — T, = { 87)
Comparing with (77), it is seen that stresses in the elastic region
for the elastic-plastic case are given by the original linear elastic
solution, but for a longer crack having its tip at the center of the
plastic zone (X (), 0) instead of (0, 0). Irwin and Koskinen
[18] and Rice [8] have noted a similar result for the perfectly
plastic case. It follows from (87) that lines of constant strain
magnitude y¥(< o) are circles concentric with the elastic-plastic

<,
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A
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N\ 48T gEGIO s
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Q‘q o —
¢ STI(_\\\ ~ _{_26 - QP\R -
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©
Op ?ﬁ’
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STANT sTRAN N EVPS

\C

Fig. 8 Geomelry of small-scale yielding near a crack tip
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Table 1 Tabulated values of D; for crack in power-law-hardening
materials

T/t ° -Dl/ Y2 -Dzlyoa —Da/yoa L 'Du/ 2 -D slyoa -Dslyoa

=0 ‘

.2 . 0408 L0004 [ 0 0 [}

o 1740 . 0070 .0006 .0001 0 o

.6 S .0398 0071 0016 000U L0001

.8 .9735 .1553 .0u89 .0186 .0078 .0028
N=_.1

.2 .0370 0004 0 0 0 [

4 .1557 .0057 . 000k 0 0 0

.6 .3851 .0318 .0055 0012 .0003 - .0001

.8 .8059 .1182 .0363 .0139 .0058 .0022
N=.3

.2 .0311 .0003 [ 0 0 0

K" .1286 L0046 . 0004 0 ] o

.6 3072 0249 . 004l .0010 .0002 0001

.8 6022 .0869 .0270 L0105 0046 .0019
N=.5

.2 .0268 .0002. 0 0 0 0

" .1096 0040 .0003 0 0 0

.5 2556 .0212 .0037 0008 . 0002 0001

.8 4810 .0709 .0223 .0088 .0039 0017

boundary, such that, if I = {[z — X(v0)]% + y?}/2is the distance
from the center of the plastic zone to a given point (z, y), the
corresponding strain magnitude is

Yo K

" Gy o

The angle ¢ between the strain vector and y-axis is one half the
angle made with the z-axis by the line drawn from the center
(X(7e), 0) of the plastic zone to the point (z, ). These geometri-
cal properties of the small-scale yielding solution in the elastic
region are also shown in Fig. 8.

Of some interest for fracture mechanics is the relation between
stress or strain at a point directly ahead of the crack tip on the
z-axis and distance, z, from the crack tip to the point under con-
sideration. Noting that ¢ = 0 ahead of the crack, from (81)
and (88), the relation is

K,? ®  du
T = —" Y7 ——— =X + R(Y)
TTo y U T (u)
_ Ko f v T _dt
= e {17(7) e f t”'y(t)}’ v
K2 ® g 1 :
2= 'me R [(ﬂ) - 1]} (89)
7o o ¥ 7 (u) 2 0% .

_ K = dt
T owre? v 0 PY®

AE -] e

with the latter forms appropriate if one prefers to work in terms of
stress, as permissible except when a bounded stress accompanies
infinite strain.

Employing (26) and arbitrarily setting the displacementw = 0
at the crack tip, the displacement at z = —[R(v:) — X (7)),
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Table 2 Tabulated values of D; for 45 deg V-noich in power-law
hardening materials

r./ro I -Dl/yoa L -D2~/y°a l -Dalyoa —D“/yoa | -Dslyoa I -Dslyoa
N=0
.2 .0248 .0001 -0 0 0 0
" .1297 0026, L0001 0 0 0
.6 .3670 .0221 .0028 0004 .0001 0
.8 .8804 .1156 L0311 .0103 .0037 .0012
LI
.2 .0220 .0001 0 0 0 o
" 1141 .0021 .0001 0 o 0
5 .3157 L0175 .0021 .0003 .0001 0
.8 L7160 .0862 .0227 .0075 .0027 .0009
N= .3
.2 .0184 .0001 0 0 0 0
4 0942 .0018 .0001 0 ] 0
.6 2535 .0139 .0017 .0003 0 o
.8 L5405 L0645 L0171 .0057 0021 0008
NS
.2 .0160 0 o 0 0 °
4 .0814 .0015 000 | o o 0
.6 ,2151 L0121 0015 .0002 0 0
.8 4423 .0537 L0143 0048 .0018 .0007

where the elastic-plastic boundary intersects the upper crack
surface, is
_ 'YDsz

Wy 2
TTo

(90)
and is independent of the hardening stress-strain relation em-
ployed.

Some Particular Examples
If one assumes a power law

- AN
T(Yy) = To('Yo)

in the work-hardening range, the small-scale yielding solution is
a correct incremental solution. As N varies from zero to unity,
(91) passes from a description of perfect plasticity to a deseription
of perfect elasticity. For N greater than unity, (90) describes
a material of the locking type. The parameters X (y), R(7v) de-
scribing the geometry of the plastic region in accord with the fore-
going discussion and Fig. 8 are

1—N K. (70)N+1

1 4+ N 2772 v
N+
R(y) = 22 (l) ' o2)

(91)

X(7) =

Y
2m7y? Y

and the eircular plastic zone extends a distance R(v,) + X (o)
= K2[(1 + N)wr?] ahead of and B(vo) — X(vs) = NK,*/[(1 +
N)wro?] behind the crack tip. From (89), distance ahead of the
crack tip and strains are related, in the plastic zone, by

1 K2 [\
Z~N+17rroz<'y> 93)
so that, for # > 0 and in the plastic region,
K.2 V(N +1)
= e A (94)
'Yﬂ(x: 0) ’YOVI:(N + 1)1TT02$:|
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Table 3 Tabulated values of D; for 90 deg V-notch in power-law-
hardening materials

'\'Q/T':> -Dllyoa | -Dzlyoa —Dslyoa | -Du/yoa | -Ds/yoa | —Dslyoa
N=0
.2 .0089 0 o 0 0 0
" L0721 L0004 0 0 0 0
.6 L2571 .0072 L0004 0 0 0
.8 .7216 .0656 .0129 0032 0009 0002
N=.1
.2 .0077 0 0 0 0 0
4 | .oes .0003 0 0 0 0
.6 .2168 .0056 .0003 0 0 0
.8 .5769 L0483 .0093 0023 0006 0002
N=.3
.2 0064 0 0 0 0 0
" L0511 .0003 0 0 0 0
.6 1766 .0046 .0003 0 0 0
.8 LB471 0374 .0072 .0018 0008 0001
N=.5
) .0056 0 0 ) 0 .0
" .ouhg .0002 ) 0 0 0
.6 .1534 L0041 .0003 0 0 0
.8 .3378 .0320 .0062 -.0015 L0004 .0001

sz NN +1)

_ Be (94)
(N + w2 _‘

Tﬂ(x’ O) = To |: (CO’I’Lt)

For the assumption of a bilinear relation between stress and
strain, in the work-hardening range

V) = T+ e~ (v — o) (95)
Yo

where ¢ is the ratio of the work-hardening shear modulus to
elastic shear modulus. Here one has :

/ /Tco

X(v) = K. { 2% _ Yo?
21 {(1 — €}y  vIQ — €)vo + €]
2¢ €Y
+ a- e)Zln |‘.(1 — €)Y + E’Y:I} (96)
Rly) = == s

2rre? Y1 — €)vo + €]

with the plastic zone extending a distance R(v,) + X(v,) =
[1 + e — €)"1In e]K,2/[(1 — e)mre?] ahead of the crack tip.
Considerable difficulties accompany an attempt to solve for v in
terms of z from (89); however, one may determine the nature of
the erack tip singularity. When € £ 0, a calculation shows
2meTyy?
—K”Y X)) + R =1 a5 y— o,

so that for z = X (vy) + R(7y) very small [that is, for large ¥ or
more precisely, ¥ 3> (1 — €)v,/€)], one has

’YOKw
To /21 €z
Ve K,
27z

Power-Law-Hardening Materials—Numerical Results

When a power law, 7(y) = 7o(v/70)¥, relates stress to strain in
the work-hardening range, the solution of equations (45, 46) for

Yu(z, 0) —

as z—0 (iffe=0) (97)

Ty(z, 0) >

() is
(XY™
fly) = (%) (98)
where
1— Ny 1 -
Ky = (g_..__)_ + (zk — 1)2)\2]\7) _ ﬂ_m (99)
4 2
The C, defined by (52) are
_ Bk — 1N —
Cv = tok = DA 4+ (100)

Substituting (100) into equations (68), the constants Dy, Dy, . . .,
D¢ were numerically determined in the dimensionless form

/ e

14}

RESULTS FOR LIGHT
WORK HARDENING 10

N=0.l

Tp=0.6 T,AND 0.8 T

Yy(x,0)/%,

STRAIN IN FRONT OF CRACK

T Ty =ty v
VAL
| S W S T | 1L I N

2 4 6 8 10 IR
STRESS—STRAIN RELATION

0.50

T =0.8T,
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- D;./Yoa, as a function of 7./7¢, for various values of notch angle
2a and hardening exponent N [recall, to the order of accuracy of
(68), Dy = Dg = ... = 0]. Tables 1, 2, and 3, respectively,
tabulate results for: (a) A crack (& = 0); (b) a 45 deg V-notch
(o = 22.5 deg); and (c) a 90 deg V-noteh (@ = 45 deg). With a
bit of interpolation within and between tables, the reader may
determine the Dy for a wide variety of problems and, through (44),
(23), and (98), fill in all details of interest for the plastic region
solution.

Values from Table 1 were employed in preparing Figs. 9 and 10
which show the solution for a crack in a lightly hardening (N =
0.1) and highly hardening (N = 0.3) material, respectively. Two
stress levels, 7. = 0.6 7o and 0.8 7, are considered in each figure as
these nicely demonstrate the transition from the circular plastic
zones of small-scale yielding to the highly elongated zones of
large-scale yielding. Stress-strain curves appear at the lower
left, positions of the elastic-plastic boundary in dimensionless
coordinates z/a and y/a at the lower right, and graphs of dimen-
sionless principal shear strain <y, (z, 0)/, along the z-axis ahead
of the crack tip at the upper right.

The general plastic region, expression (44), for the potential
function ¢, with strain plane gradient equal (19) to physical
coordinates, may be put in the form

¥ = D (Vl) " {sin AP

® Dy v " }
+ k‘éz D (%> sin (2k — 1)A@p» (101)
for power-law-hardening, after employing (98). Since u;, — 1 >
0 from (99) for k = 2, 3, 4, .. ., when v is extremely large com-
pared to v, (and thus corresponding physical coordinates very
near the notch tip), the terms inside the summation of (101) are
negligible in comparison to unity, and the bracketed term is es-
sentially equal to sin A¢. Thus, very near the crack tip,
()"
Y—D | — sin A (102)
Yo

But this limiting form is equation (70) for ¢ as appropriate for
small-scale yielding, except that now D, is given by (68) instead
of (69), and the crack tip strain singularity has the same func-
tional form as for small-scale yielding. Since power-law-harden-
ing resulted in radial loading in the small-scale yielding plastic
region, we conclude that the dominant (singular term) crack tip

strains always correspond to radial loading, and thus the deforma-
tion theory is expected to closely approximate an incremental
solution even at high stress levels for a power-law-hardening
material.

A generalization of the foregoing argument on the dependence
of the notch tip singularity only on the first term of (44) is of some
interest in developing a fracture criterion.
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