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ENERGY CHANGES IN STRESSED BODIES DUE TO VOID AND CRACK
GROWTH™

J.R.Rice® and D.C.Drucker™***

ABSTRACT

It is demonstrated that the removal of material or the creation or extension of cracks always reduces the
total potential energy of any non-linear or linear stable elastic body under fixed load and displacement boundary
conditions. A weaker statement that crack extension releases potential energy in excess of plastic dissipation
is established for stable elastic-plastic bodies, with certain strong but reasonable restrictions on the path of
traction removal from the new surface. Crack healing, however, always absorbs energy. Implications for the
Griffith theory of fracture, including its extension to inelastic materials, and the mechanical aspects of stress
corrosion cracking are discussed.

INTRODUCTION

A comparison is made first between two bodies (a) and (b), each composed
of the same distribution of non-linear or linear elastic material, and each
in equilibrium under the same loads and displacement boundary conditions,
Fig.1l. It is demonstrated that if the voids and cracks of body (b} include
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Fig.1. Loaded body before (a) and after (b) formation or growth of voids by removal of material or crack
extension.

all the voids and cracks of body (a), the total potential energy of the (a)
system exceeds or equals that of the (b) system. Creation of new traction-
free surface, whether by fracture or by removal of material, then is shown
to release mechanical energy in every loaded or initially stressed elastic
body. The corresponding statement for a body of stable elastic-plastic
material is much weaker. Crack healing, or the reverse of crack growth,
is shown to absorb mechanical energy. But crack growth need release
mechanical energy only for a restricted class of paths, which include mono-
tonic reduction of tractions to zero as new crack surface is formedand mono-
tonic slip on discrete surfaces. A discussion is given of the implication
of these results for the Griffith! theory of fracture, including its extension
to inelastic materials, and for the mechanical aspects of stress corrosion.
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Irwin®, Bueckner®, and Sanders* have discussed the calculation of energy
release rates due to crack extension in linear elastic solids, and have
emphasized that Griffith-type fracture criteria, resulting from an overall
energy balance, are determined by local conditions at the crack tip. Rice?,
in a recent study of the extension of the Griffith concept, has pointed out
that local conditions govern also in inelastic continua.

MINIMUM POTENTIAL ENERGY THEOREM FOR A STABLE ELASTIC
SYSTEM

A strain energy density function
W _ €1'Hll d O f ; 0
(€mn) ) 0 Gij €ii > Or € (1)

exists at each point of an elastic material, with value independent of path
in strain space from 0 to €., Linear as well as non-linear behavior is
included without restriction to isotropy and homogeneity (we do, however,
subsequently assume that geometrical non-linearities in strain-displacement
gradient relations are negligible). As is customary and often implicit, the
elastic material will be presumed stable in the sense introduced by Drucker®.

In the small
do.de., > 0 (2)
ij ij

for corresponding increments of stress and strain. Considering two states
(q) and (r) and integrating along a straight line in stress space so that
dcij has the direction of o - c(i‘}), inequality (2) implies

(0
mn _ <@ )
j @ Loy -0 ]de; >0, (3)

€mn

This result holds for all paths between (q) and (r) because elastic behavior
is path independent. In the one-dimensional cases of simple tension or
simple shear, the postulate of stability means that a change in stress causes
a change of like sign in strain; the slope of the stress-strain curve is
non-negative. ‘

The characterization of a material as elastic and stable, with the further
assumption of the absence of geometric, as opposed to constitutive, non-linear
effects is sufficient to ensure validity of the minimum potential energy

theorem:
T t
=JV W(Ema)dV - )'AT T?luidA - JV F?u‘idV

» T — P
< JV W(E v —-}.AT Tiu;dA - JV F,u/dV = P".

Here uj, entm are the actual or true displacements and strains produced
entirely or in part by the surface tractions T} and body forces F{. The set

u¥, €/ is any other kinematically adm1ss1b1e dlsplacement and associated
strain field satisfying the boundary conditions on Ay, with u i reachable from
u! in the sense that u¥ - ul be continuous. Note that uf and u¥ need not
separately be continuous; a state of residual stress may exist at zero load.
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In the comparison of P' and P¥, the integral over the surface area A,
where tractions are specified, can be replaced by the integral over the
entire surface area A = Ap + A, because

t .t - T3k
JA Tiuid‘A‘ - JAu TluldA'

u

The proof of (4) is well-known and follows immediately from the equation
of virtual work (or alternately, Green's theorem) for any continuous displace-
ment field u(i: and associated strain field E‘S,

jA TEuGdA +fv FEuSav =jv of €5dv, (5)

where TE, FE, of is any equilibrium set. Therefore, with the choice of
the true set as the equilibrium set and the difference field u¥ - u}, €X 0 - €
as the displacement set,

P* - Pt = jv [W(elﬂ;ﬂ) - W(entln) - O-HEH (E;I::ﬂ - €r;n):,dv

:jv [J.engn (0'1J - O'ij)dEij ] dv >0

from (3). For elastic materials of the usual type withsingle valued relations
between stress and strain, the equality sign applies in (4) and (6) only when
the two states (t) and (*) are identical.

CHANGE IN POTENTIAL ENERGY DUE TO QUASISTATIC VOID GROWTH
AND CRACK EXTENSION, (a) TO (b), IN ELASTIC MATERIALS

Consider any loaded elastic body in equilibrium, T; specified on A 1,,
F, specified in V,, u; specified on A, fig.la. The special case of residual
stress under zero external load is included. As indicated schematically,
the body may contain voids, notches, and cracks. Suppose that separately
or in combination, material is removed from unloaded regions of the body
or portions of the boundary, additional cracks and voids are introduced,
and existing cracks are extended, fig. 1lb, while the given loads and dis-
placements are held fixed. All void and cracks of the initial state (a) are
contained in those of the final state (b). Conversely the material volume Vy
is contained in V,.

The boundary conditions on the unchanged area A  are the same for (a)
and (b). Therefore the displacements u{ and strains €2, of the initial state
(a) are a kinematically admissible set for the final state (b) in V,. From
(4), with (a) X (b),

b b
PP = | W(e 2 )dv -f Thulda - Foy?
Vi ATy Vp

by b2
< JVb W(e2 )dv - -J.ATb T;ujdA - va FiuydV
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in which the symbol A7, denotes integration over the portion of boundary
of Vy, where surface tractions are specified. The potential energy of state
(a) is

a.a
P2 = J.V W(e mn)dV - JAT& T?u?dA - J'Va Fiu;dVv. (8)
a

As T = 0 on all surfaces from which material is removed, T? = 0 on the
new surfaces thus created, and Tf = T'l? elsewhere on Ap, the surface in-
tegrals are identical in (8) and the lastline of (7). Then, because F = F?
in V

b,

P’ < P* - J W(e o )dV +f Fiuidv, (9)
VaVp Vb

where V, - Vy is the region from which material has been removed in going
from (a) to (b). If there is zero or negligible body force in this region.
or if the region is of zero volume, as for crack introduction or extension,
the potential energy theorem (4) gives

Pb< pa, (10)

since W » 0. Potential energy is released by the quasistatic introduction and
extens1on of voids and cracks.

Cutting or material removal by corrosion or etching always causes a body
to be a weaker spring. Crack extension always makes potential energy
available for absorption in the form of surface energy, as in the original
Griffith theory, or modified surface energy as in Irwin's? and Orowan's’
extension of this theory (P? - PP is set equal to the energy required for
fracture).

Two special cases of (10) are of interest. For loading by displacements
only (T =0onAg, F;, =0 in V), or for zero external load and a residual

stress state, J W(e dV so that

mn

J W(Enll’n)dV < J W(e 2)dV. (fixed grips) (10a)
Vi Va

Strain energy is decreased from (a) to (b) for loading by fixed grips or
by a residual stress state alone. For loading by forces only (u; = 0 on

Au) and no residual stress state, P = - J Q(Gmn)dV where Qis the comple-
o, \'

mentary energy densityj mneijdoij. This result follows readily from the
0

principle of virtual work (5). Consequently
jvb Q(Gmbn)dV >.le Q(o 2)dV. (fixed forces) (10b)
a

Complementary energy is increased for loading by fixed forces in the absence
of residual stresses. For linear elastic systems Qo) = W(€y,) so that
strain energy may either decrease or increase depending on the method of
loading, but the total potential energy must decrease. The potential energy
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reduction in void and crack growth may be calculated explicitly from (7),
(8), and virtual work:

b _
p? . pP = JV w W(e2)dv + va [ W(ed) - Wied) - of(ef - eq)]av
a

e b
a mn b
Jva _Vb W(Emn)dv + N [ J‘ (Gij - Oij)deij:, dav

€mn

i
= W(e 2)dV + Tb . 11
Jva -V (€m0 jAb [Ju% (T Ti)dui] da, (11)
for negligible body force in V, -V, or for V, -V, = 0 (crack extension),
Ay is the bounding surface of Vb ; Tyo= T‘f on that portlon where tractions
are prescribed, and u; = ub where displacements are prescribed, so that

the surface integral vanlshes everywhere eXcept on AAab, the new surface
created in going from (a) to (b). Since Tb = 0 on AA

b
pPA. pP= J.v y W(el)dV - JAA {Jﬂ:? Tidui:! dA ; (12)
a ab

b m

the potential energy reduction is the initial strain energy of the removed
material plus the negative of the work done by tractions on the new surface
in the process of reduction from those values due to the stress field of
state (a) to zero. In the special case of quasi-static elastic systems,
with completely linear behavior up to and beyond the creation of new surface,

b
P p°= %JV L, ohedav -3 JAA X TF(u? - uf)dA. (13)
b a

Irwin®? and Bueckner? arrived at this result for cracks (V, = V) ;Irwin's
calculation of the energy release rate? for crack extension in terms of the
stress intensity factors for the three modes of crack tip deformation then
follows directly. In view of the simplicity of eq. (13), calculations of energy
changes involving integrations over the entire volume and surface of the
body would a &)pear unnecessarily awkward and difficult because boundaries
at infinity 89 must be treated properly (most mathematical solutlons are
available only for infinite regions). Indeed, Griffith later reported!® an error
in his orlgmal calculation! due to this difficulty, and some recently reported
results’ based on infinite body integrations lead to energy release rates
which are not positive definite.

It is of interest to note differences in the method of calculation of energy
release rates for void expansion as opposed to crack extension. Consider
a narrow elliptical void under plane strain with a fixed semi-minor axis
£, and semi-major axis {. For an increase Al of the semi-major axis, the
volume integralin (13) is of the order of Al. In the surface integral, however,
T? differs from TP = 0 by order A¢ and uj -uf also is ofnorder Al ag may
be verified by an explicit calculation based on the solution™® for an elliptical
hole in an infinite sheet under tension. Thus in the limit, as AL — 0, only
the volume integral contributes to 8P/8f. On the other hand, for a crack
of length 2Z, the volume integral is zero and the surface integral is o¢rder
Al (due to the stress singularity). Only the surface integral then contributes

to gTP One may verify, however, that as the ellipse shrinks to a crack,
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2, — 0, both calculations give the same result. While we have been unable
to set precise conditions for more general configurations, it would appear
that only the volume integral over the removed material in (12) or (13)
contributes in the extension of a void from one member of a family of smooth
surfaces to another infinitesimally close member.

QUASISTATIC CRACK EXTENSION, (a) TO (b), IN STABLE TIME-
INDEPENDENT ELASTIC-PLASTIC BODIES

eb
The path dependence of the work function j e o;jdejj for irreversible
a

materials prohibits statements of corresponding gerlchlenrality for time-independ-
ent elastic-plastic bodies. Both the change in strain energy density and the
energy density lost in plastic deformation are included in the integral. For
crack extension alone, V, =V, =V, the change in potential energy pb - p?
plus the plastic dissipation D, is

b
€ b
P® P4 D, = Jv [j T g de; } av - f TP (u? - ui)da
A

€2 Th

1

‘- J F (u®- u?)dv
v

because T}f = T? on the portion of the boundary where surface tractions are
specified, and FP = F2 in V.

With the choice of uF - u} as the displacement field, 65 - 6% as the
strain field, and ij as the stress field in the equation of virtual work
(5),

j To(uP - u?)dA + J F (ud - uf)dv = J‘ ob (e} - €})av
ATh \

\
(15)
€ b
_ mn b
= J [5 R Gijd€ij J dv
v €mn
Therefore~(14) may be rewritten as
b
Pb Pa ‘D N €mn( b d dv (16)
B ab v ca ‘Vij ~ ojj)de;
mn

The total release of mechanical energy, by crack extension, over and above
the plastic dissipation D, and the change in stored energy of the body is
the negative of (16) or

€rin
P*- (P*+ D) = JV U (03 - Gi}})deij:l av (17)

b
€mn

Stability of elastic-plastic material in the large for a path (q) to (r) or
(b) to (a)
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engn €2 N

1 q m

cq (aij - Gij)deij or j€b (cr.i]. - o2)de.. > 0 (18)
mil

does not guarantee a release of mechanical energy, despite the apparent
similarity of (17) and (18). The integrals as written in (17) and (18) do
go from (b) to (a), but the material of the elastic-plastic body follows the
path (a) to (b) during crack extension. This distinction is of no consequence
for elastic materials (3) because of their reversibility. Except for special
paths, however, it is crucial for elastic-plastic materials which are irre-
versible,

Fortunately, some of these special paths which guarantee energy release
or availability are encountered in practice. If there is no unloading and
the path of loading is radial (proportional) or closely so, the distinction
vanishegs between a proper incremental form of plastic stress-strain relation
and anon-linear elastic relation (deformation theory of plasticity). Monotonic
slip confined to a set of parallel planes with a perfectly plastic law or a
stable work-hardening relation also will fit into this category. So also does
any other plastic deformation pattern which simply increases in ratio or
nearly in ratio.

In general, however, unloading does occur in some of the regions of the
body which have been plastically deformed, directions of principal stresses
and maximum shear stresses rotate appreciably, and (18) is not applicable
even approximately for paths from (a) to (b).

An alternative expression to (17) in terms of a surface integral then
becomes useful. As for (11) and (12), only the newly created crack surface
AA L, appears because the given loads and displacements are fixed in the
transition from (a) to (b)

b
P? - (P® + D) = -j J " T.du | dA (19)
AAab Ll"il ! !

The form of the integrand T;du; shows that mechanical energy is released
for all crack extension paths from (a) to (b) which obey strong but not
unreasonable restrictions. A zero value would be obtained if crack extension
along AA , were to represent an instantaneous and therefore not a quasi-
static drop from the high surface traction across the as yet uncracked sur-
face to the zero value for an open crack. If, however, the mechanism is
thought of either as one of cleavage with an attractive elastic type of force
between the surfaces which separate quasi-statically, or as a ductile opening
of voids, T;du; < 0 af each stage and energy is released, Any prior plastic
deformation as the crack tip approaches the region of incipient fracture
contributes to D,, but does not affect the surface integral because du; is
zero until the crack begins to open up.

Rice® has discussed the extension of the Griffith concept to fracture in
elastic-plastic systems from a point of view which regards plastic energy
dissipation away from the immediate surface of separation as an intrinsic
part of the constitutive description of a material (as in continuum plasticity
theory) rather than as a part of a modified surface energy term? The procedure
is analogous to that for an elastic system in which a crack is visualized
as extended under various loads and the fracture strength is determined as
the load at which the mechanical energy release (from potential energy alone)
equals the work (surface energy) not included in the continuum description
but requiredtocreate new surface. In anelastic-plastic system the mechanical
energy surplus is the excess of potential energy change over plastic dissipation
and equals the work excluded from the continuum description but required
to create new surface. Path limitations which provide such a non-negative
mechanical energy surplus do appear physically appropriate (19)., Thus,
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presuming this surplus to be an increasing function of applied load and the
non-continuum work to be adequately estimated as the true surface energy
for cleavage or the modified surface energy for ductile void growth and
separation, the surface energy serves to determine fracture strength inthe
sense that variations of surface energy for the same fixed constitutive
relations cause corresponding variations in fracture strength. Reduction of
surface energy by, say, one-half reduces the fracture strengthby a comparable
amount. The fact that the total plastic dissipation usually is enormous 2.7
compared to the true or the modified surface energy only implies that the
surplus is small compared to the dissipation, not that surface energy is
inconsequential, It is plausible that a significant reduction in surface energy
along the path of crack propagation, with a negligible modification of the con-
stitutive relations, can occur in short-time contact of a material with its
environment. Thus embrittlement by contact with liquid metals or similar
agents12 appears consistent with this extension of the Griffith theory to elastic-
plastic materials. Williams!® has noted a similar dominant role of surface
energy in his extension of the Griffith theory to visco-elastic materials.

As already described, the real difficulty in a precise description of the
behavior of elastic-plastic bodies lies in the reverse nature of the proof
which works so well for elastic bodies. While the system goes from (a)
to (b) in (17), the proof goes from (b) to (a) in (3) and (18), or (t) to
(*) in (16), an inconsequential difference only for reversible systems.Now
consider the reverse process of crack healing, (b) to (a), rather than crack
extension. The path integral,

€ @ ‘
j mbn Oijdeij (see (14)), is again the change in strain energy plus the
c :
enerri'rigy dissipated. In analogy to (16) with D;, denoting the total dissipation
in crack healing,

b _
P2 - P +Dba—J

€ a
. U:}f (05 - of )deij] av ) 0 (20)

mn

as a proper consequence of stability in the large, because the system now
actually traverses the path (b) to (a). Crack healing absorbs energy in all
stable time-independent materials; crack extension need not release energy,
without path restrictions, except in reversible systems.
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RESUME - On démonire que tout corps a stabilité élastique linéare ou non linéare, soumis 2 des conditions
définies de mise en charge et de limitation de déplacements, voit deminuer son énergie potentielle totale
lorsque 1'on procede @ une ablation de matiere, ou que se ciéent ou se propagent des fissures,

En ce qui conserne les corps élastoplastiques stables on établit ume proposition plus nuancée aus sujet de
la réduction de 1'énergie potentielle en exces sur la dissipation plasiique, lorsque se propage une fissure;
certaines restictions importantes encore que raisonnables sont formulées au sujet de la maniere dont évolue
1'état de tension a partir des nouvelles surfaces libres créées, La croissance d'une fisswre ne correspond a
une réduction de 1'éénergie potentielle mécanique que pour une classe restreinte de modes possibles, Par contre,
a la fermetwre d' une fissure correspond toujours une absorbtion d'é&nergie. On discute la portée de ces com=
sidérations sur la théorie de la rupture de Griffith, y compris I'extension de cette théorie au cas des matériaux
inélastiques, er les aspects mécaniques que revet la fissuration par corrosion sous tension.

ZUSAMMENFASSUNG - Es wird demonstriert, dass die Wegnahme von Material oder die Schopfung bzw. Ver-
lingerung von Rissen immer die totale potentiale Energie irgeneines linearen oder nicht linearen stabilen
elastischen Korpers unter bestimmten Belastung und Zustdnden der Versetzungsgranze verringert, Eine schwichere
Behauptung, dass Rissverlingerung potentiale Energie im Ubermass zur plastischen Korper festgelegt; mit ge-
gewlissen strengen, verniinftigen Begrenzungen auf den Weg der Zugkraftentfernung von der neuen Oberfliche,
Rissheilung aber nimmt immer Energie auf. Tiefere -Sinne der Griffithschen Bruchtheorie, deren Erweiterung
auf unelastische Stoffe eingeschlossen und die mechanischen Erscheinungen der von Spannungsanfressung ver-
ursachten Risse werden Besprochen.





