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ABSTRACT 

An exact  linear e las t ic-perfect ly  plastic solution is presented for the problem of a sharp notch (or, when 
the notch angle is ze ro ,  a crack) in a plane of finite width subjected to ant i -plane stresses inducing a 
stress and deformation stare of longitudinal shear. General solutions for physical coordinates  corresponding 
to given stresses, position of the e las t ic-plast ic  boundary, and accompanying displacements are given h~ 
terms of finite single integrals. 

The case of cracks  is treated in detail  and closed form so lut ions  are presented in terms of e lementary and 
ell iptic func t ions .  Numerica l  results are given and applications of the solution to the development  of frac-  
ture mechanics  failure cri teria,  as well as some inherent difficulties, are discussed. 

INTR ODUC TION 

The exact determination of the influence of plastic yielding on the stress 
and deformation near the root of a crack or notch is of basic importance 
for the mechanics of fracture and fatigue. In the absence of relevant exact 
solutions for tensile loadings acting perpendicular to a crack line and in- 
ducing a state of plane strain or generalized plane stress, two distinct 
approaches have been taken. First, there is the work of Dugdale (I) as ex- 
tended by Goodier and Field(2) and Rice (3) wherein plastic yielding is 
handled in an approximate manner (most appropriate for plane stress con- 
ditionsl by placing constraining yield level tensile stresses along a slit 
ahead of the crack tip in a manner which ensures bounded and continuous 
stresses at the edge of the plastic zone. An alternate approach is con- 
sideration of the simpler elastic'plastic problems arising under longitudinal 
shear loadings as in the work of Hult and McClintock (4), McClintock (5), 
and Koskinen(6). Here one attempts to reason by analogy with the techni- 
cally important cases of tensile loadings; McClintock and Irwin (7) have 
pointed out that several important observed features of yielding around 
cracks under tensile loadings are preserved in the longitudinal shear case. 

The problem solved here of an edge notch, with depth a and angle 2c~ 
in a plane of width b and of infinite height, subjected to longitudinal shear- 
ing stress ~- is shown in Figure i. Koskinen has treated the same problem 
in [6] but solved it only for special cases through the approximate numer- 
ical scheme of finite differences. The importance of the corresponding 
tensile problem for practical cases of cracks and notches in finite struc- 
tures and for fracture toughness and fatigue crack growth testspecimens 
has led the author to consider an exact analytic solution as presented here. 
The solution for the single edge notched plane of Figure 1 is identical to 
that in corresponding regions for the doubly edge notched, internally notched, 
and rigid shearing punch configurations of Figure 2 since symmetry re- 
quires that ~'xz vanish on the centerlines for the latter three cases (this 
equivalence is only approximately true for tensile loadings as indicated by 
the elastic solutions of [8-11]), 

The anti-plane deformation of iongitudina:l shear involves displacements 
w = w(x, y) in a direction perpendicular to the (x, y) plane 0n!y, and all 
stresses except the shears ~'xz, ~'yz are everywhere zero. Stress equili- 
brium and isotropic elastic stress-strain relations lead to the conclusion 

~w ~v¢ 
that ~'xz - i~'yz = G (~x - i ~-~) is an analytic function of the complex 

variable x + iy in the elastic region, where G is the shear modulus. As- 
suming a Tresca (or Mises) yield equation k/~-x2 z + ~'~z = k = yield stress 
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Fig. 2. Equivalent problems 

in shear and a Mises type plastic flow rule, Hult and McClintock (4) have 
shown following the treatment of Prager and Hodge, (12) that in the plastic 
region stresses and strains are given by 

TOz = k ,  Trz = 0 (1)  

1 aw _ k R(0) a_xw = o (2) 
T 0 z  = r a 0  G r ' 3~rz = ~ r  
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w h e r e  R ( @ ) i s  the d i s t a n c e  f r o m  c r a c k  tip to the e l a s t i c - p l a s t i c  b o u n d a r y  
as  in F i g u r e  1. 

TRANSFORMATION TO STRESS PLANE 

Since Txz i~-yz is an analytic function of x + iy in the elastic regionj 
one has conversely x - iy an analytic function of ~'xz + i~'yz. Making the 
quantities dimensionless through division by notch depth a and yield stress 
k, 

x - i X = f,(~) (3) 
a 

where 

"rxz + iTy z 
• ~ = ~ + i~ = -i k (4) 

and f(~) is an a n a l y t i c  func t ion  for  all  v a l u e s  of ~ c o r r e s p o n d i n g  to s t r e s -  
s e s  in the e l a s t i c  d o m a i n  ( that  is ,  fo r  I~1 < 1), A s  in [ 4 , 6 ] ,  t h r o u g h  
c o n s i d e r a t i o n  of the d i r e c t i o n  o f  the s t r e s s  v e c t o r  on the t r a c t i o n  f r e e  
b o u n d a r y ,  u n i f o r m  c o n d i t i o n s  at  inf in i ty ,  and no t ing  that  I t ]  = 1 on the 
e l a s t i c - p l a s t i c  b o u n d a r y ,  the e l a s t i c  r e g i o n  in the (x ,y )  p l ane  m a p s  in to  
the s l i t  s e c t o r  of a un i t  c i r c l e  in the ~ p lane  as  in F i g u r e  3, w h e r e  po in t s  
A, B . . . .  , J  c o r r e s p o n d  to t h o s e  of F i g u r e  1. 

Txz 
K 
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Fig. 3. Map of elastic region in the stress plane 
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The notations 

1 Y 1 s = ~ ~'yz k 
=_+oo 

a dimensionless applied stress, and 

i 
6 =~yz 

x = b-a, y = 0 

C5) 

1 
= ~ ~x (6)  

a r e  i n t r o d u c e d  w h e r e  the d i m e n s i o n l e s s  s t r e s s  6 at  point  I is to be d e t e r -  
m i n e d  f r o m  the cond i t i on  that  f ' (6)  be bounded,  s i nce  x - iy is a c o n -  
t inuous  func t ion  of ~xz + iTyz in the n e i g h b o r h o o d  of poin t  I. F r o m  the 
s t r e s s  so lu t ion  in the p l a s t i c  zone of (1), the angle  @ of F i g u r e  3 is i den-  
t i ca l  to the angle  8 of F i g u r e  1 fo r  c o r r e s p o n d i n g  Poin ts  on the e l a s t i c -  
p l a s t i c  b o u n d a r y .  

B o u n d a r y  c o n d i t i o n s  a r e  g iven  in t e r m s  of a h a r m o n i c  func t ion  ¢(~,r7) 
w h e r e  

¢(~,~?) = R e  [ f ( ~ ) }  

and, f r o m  (3) with C a u c h y - R i e m a n n  equa t i ons ,  

8 ¢  _ x 8 ¢  _ y 
8~ a '  ST} a" 

(7) 

(8) 

Letting 8/8t denote differentiation with respect to arc length around the 
boundary of Figure 3 in a counter-clockwise sense, boundary values may 
be computed from 

- I 
8 ¢  8 ¢  8~ + _ _  _ _  = R e  ( ) 8~  (9) 

This is readily shown, from stress boundary conditions and coordinates 
of Figure i, to vanish on the inclined radial lines BC and EF and on the 
circular arc CDE. Since 8~/ag = + 1 on the top and bottom sides of the 
slit, respectively, 8~/8~ = +_ x/a on the slit. Integrating and .arbitrarily 
setting ~(i, 0) = 0, one obtains for boundary values ~ = 0 on the inclined 
radial lines and circular arc, and on both top and bottom sides of the slit 

¢ ( ~ , 0 )  = - ~ ,  0 < ~ < s (lO) 

¢ ( ~ , 0 )  = - ~ s  + (~  - 1) ~ ,  s < ~ < (ii) 

where 

= b / a  (12) 

is the dimensionless ratio of plane width to notch depth. 
Since x - iy = R(8)e -ie on the elastic-plastic boundary, the position of 

the boundary may be determined from (3) as 

R(@) - eie f , (e ie)  
a 

R._mo = f' (1) (13) 
a 

E q u a t i o n  (2) m a y  be i n t e g r a t e d  to give d i s p l a c e m e n t s  ( r e f e r r e d  to p o l a r  
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coordinates) of the elastic-plastic boundary. Setting w[RRo, O] = 0, 

e e iB 

W[R(e), Q] = $ 1 R(B)d@ = % is f’(eie)d(eie), 
0 1 

and thus 

Gw bW, 61 
ka = -i[f(eie) - f(l)J 

Gwo 
ka= -i [f( e ipi -i(y) - f(l)] , (14) 

where w0 is the displacement discountinuity occuring at the notch tip. 

SOLUTION OF PROBLEM 

The problem of Figure 3 is readily solved by resort to conformal map- 
ping onto a unit semi-circle in the complex n = w + ih plane, with car- 
responding points shown in Figure 4, where 

i2= R(1) = i (WY”, 

Fig.4. Map of stress plane onto unit semi-circle 

and the exponent n is given in terms of notch angle (Y by 

(15) 

Let B I(LJ, X) = d(5, t7) so that bl(ti, X) = Re \f(c)} when C is expressed in 
terms of Q. Boundary conditions are as in Figure 4 with & vanishing 

The function everywhere except on the segment BIF of the w axis. 

g( s2) = k 
I 

d,b, OW 
,w - i-2 

BLF 

(17) 

has a real part equal to #i(w, 0) on BIF and vanishing 
the w axis (in fact, 

everywhere else on 
g(R) is the solution for the half plane problem with 

n = 2nn 
1T -2a (16) 
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identical boundary values on the w axis). A solution to the unit semi-circle 
problem of Figure 4 is now obtained by adding to g(Q) another analytic 
function having a real part which (a) vanishes on the w axis for J wJ < 1 
since g(~)) already satisfies prescribed conditions, and (b) is equal to 
-Relg(~Q) I on the unit circle f~=e~ so as to satisfy ~i = 0 for J~J = i. 
Consider 

' 1 f ¢~(~,0)d~ 
g(1/~2) = ~-[ .~ w - 1l~ ' (18) 

BI5 

which is analytic and free of branch cuts for all J~QJ <_ i. Clearly, for 
on the real axis between +i, g(i/f2) ~s pure imaginary so that condition 
(a) is satisfied. Since-g(Q) J -g(~) and ~ = e-i% ~ = i/~ on the unit circle, 

[gi1 ~ ~) + g(1 r ~ ]  1 [g(~ ~ ~1 - gl ~)] Re {g(lle)} = ~ = 

s a t i s f y i n g  condi t ion  (b). Thus  ¢~(~,X) = Re ~g(~) + g (1 /~ )  ! is the so lu t ion  
and f(~) = g [ n ( ~ ) ]  + gL1 /n (~ ) ]  l ead ing  to 

f(~) 1 f [ 1 + 1 ] = -q ¢~(¢o, O) ¢ a - ~ )  w l / e ( ~ )  do9 

1 I [ = ~ ¢ ~ ( ~ o ,  o )  + ~'1 ~ - ~(~') ~ - 1/~(~')  
IF 

1 1 ]dw, 
- ~ + ~ ( ~ ' )  ~ + 1 / ~ C ~ ' )  ( 1 9 )  

since ~l(w, O) is an even function. 
Transforming the integral in the ~-~ plane to an integral in the ~ plane, 

combining fractional terms, and setting ~l(w, 0) = ~(~, 0) of (i0, Ii), 

2 ~I ~r~+~C~'IL ,J ji' ~(~,,, 0)~' (~I [ ~ l - 1 ]  ~ f(~) (20) 
- H . o n~(~)~(~)_[l+~(~)] ~(~)+~(~)' 

with 

~(~) = ~. (21) 

The d e r i v a t i v e  f '(~) = ( x - i y ) / a  m a y  be d e t e r m i n e d  by f i r s t  i n t e g r a t i n g  (20) 

_ 3 ¢ ( ~ ; 0 )  t he re  r e s u l t s  by p a r t s  and then d i f f e r e n t i a t i n g .  With ¢ ' (~ ,0)  a~ 

f,(~) = 2 f2,(~)[i_~2(~) ] f~ ¢'(~,0)w(~)[l+w2(~)]d~ 
~-i o ~2(~) w4(~)_ [i+ ~4(~)] w2(~)+~2(~)" (22) 

Since ~'(6) is infinite, the condition of boundedness of f'(6) requires that 
the coefficient of fY(~) be zero when ~(~) = f~(6) - 0. Thus 6 is the solu- 
tion of 

0 = / ~,(~.0) 1 + ~2(~),. 
w('~) a& , (23) 

O 
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which with the aid of (i0, 11, 21) and the substitution t = ~/5 becomes the 
implicit equation 

f l  1 6 a s n 
x / ( 1  - 2"t )il - t n) 

fi = o 

f 
l 

s/~ 

1 - 5r~ n 

%~(1 - 62ntn) (1  - t n) 

dt 

dt 
(24) 

When the plane of Figure 1 is infinitely wide so that fl----oo, one has 
5 = s and the boundedness condition is no longer required. The above solu- 
tions for f(~) and f'([) remain valid except that now 6 is everywhere re- 
placed by s and ~I(~,0) is given by (i0) with (ii) being disregarded. 

E L A S T I C - P L A S T I C  BOUNDARY 

T h e  l o c a t i o n  a n d  d i s p l a c e m e n t s  of  the  e l a s t i c - p l a s t i c  b o u n d a r y  a r e  d e t e r -  
m i n e d  b y  (13)  a n d  (14)  w h e n  ~ = e ie. C o m p a r i n g  F i g u r e s  3 a n d  4,  p o i n t s  
on  the  a r c  of  u n i t  c i r c l e  in  t he  ~ p l a n e  a r e  s e e n  to m a p  o n t o  an  a r c  o f  u n i t  

c i r c l e  in  t he  f2 p l a n e  s o  t h a t  fY(e ie) = ei~ (°) a n d  fY'(e i°) = _ie_t0 d.__.~ f y d  (e ie)  

= ~' (@)e-iCe i¢(e) One  r e a d i l y  s h o w s  t h a t  

7r 1 ~{i + 6 2n) cos nO -25 A ~, (25) ¢(e) = ~ + g cos-! [( 2n) 
I + 6 ' 26 n cos  nO ) 

w h e r e  t h a t  b r a n c h  of the i n v e r s e  c o s i n e  i s  c h o s e n  w h i c h  v a r i e s  f r o m  0 
w h e n  0 = 0 to 7r when  O = r / n  = 1 / 2  ~r-~, and 

n I - 6 2n 

¢ ' ( 0 )  = g (1 + 6 2n) - 26 n c o s  nO (26) 

W i t h  t he  a b o v e  s u b s t i t u t i o n s  f o r  gY(e i°) a n d  f~ ' (e  i°) i n s e r t e d  i n t o  (22) ,  
equation (13) results in 

R(0) : _ ¢,(o) s i n  [ ,(0)] 
a 

~ ¢,(~,0)~(~) [~2(~) + 1] d~ 
o ~04(-~) - 2~02(~) c o s  [2@(8)] + 1 

(27) 

Using previously given expressions for all quantities involved and making 
the substitution t = ~/6, the elastic plastic boundary is given by 

R(8) _ 2n 5 1 + n/2 cos --~ 

a ~ V1 - 2 6 n cos nO + 6 2n s/~ 

(1 - 5nt n) J (1 - tn ) (1  - 62%n)  / 
1 

1 - 26n t  n c o s  n8 + 52nt 2n J dr. (2a) 
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fo r  - (Tr /2-a)  ~ 0 ~ + ( ~ / 2 - a ) .  Se t t i ng  0 = 0, the m a x i m u m  zone  Ro is  

a 7r 1 6n - B • (29) - 1 6nt n 
s/~ 

Since  f(1) = 0 e q u a t i o n  (14) l e a d s ,  t h r o u g h  (20) and the e x p r e s s i o n  f~(pi0) 
= ei~ (0) , to 

a w  JR(O), O] . i cos  [~(0)] 
k a  ~r 

f ~ ¢ ( ~ , 0 )  ~ , ( ~ )  [ 2 ( ~ )  1] d~ 

o ~ 4 ( ~ )  _ 2 ~ . ( ~ )  c o s  [2¢40) ]  + 1 

(30) 

S u b s t i t u t i n g  as  f o r  (28) above  and c a r r y i n g  out p a r t  of the i n t e g r a t i o n ,  d i s -  
p l a c e m e n t s  of p o i n t s  a l o n g  the e l a s t i c  p l a s t i c  b o u n d a r y  b e c o m e  

Gw [RI0) ,  0] 
k a  

l°gL(1-S n) \/1-25 ~ cos nO + 6 gn - 2 sin(~)k~sn-sn)(1-sn5" 

- -  ~'1 nO[ i1  f l  ] + 2n 6 1 + n/2 -26n cos nO + 6 2n sin ~- - /3 
7F o s/~ 

~atn) ( 1 -26n t  n cos  n8 + 5Pmt2n ) 

for  - ( ~ / 2  - ~)  < 0 < + ( # 2  - o0. W h e n  0 -- +__(7r/2 - o~), R ( 0 )  -- 0 but  the 
d i s p l a c e m e n t  is  f in i te .  Thus  t h e r e  is  a d i s p l a c e m e n t  d i s e o u n t i n u i t y  of m a g -  
n i tude  2w o at  the no t ch  t ip w h e r e  w o, the d i s p l a c e m e n t  a t  8 = (~r/2 - or), i s  

GWo __ 2A~ log F ,,/1 s"6" + ~6n - sn 

ka  ~r L ql - sn5 a - x]6n - S a 

7r (l+Sn) 13 
o sl~ 

[ ~  t n ] dt (32) 

(1 - t n ) ( 1  - 62ntn)  (1 + 6nt ~)  . 

E q u a t i o n s  (28, 29, 31, 32) r e m a i n  v a l i d  fo r  a p l a n e  of in f in i t e  wid th  (J3 = =o), 
e x c e p t  tha t  now 6 is  e v e r y w h e r e  r e p l a c e d  by s,  the l o g a r i t h m i c  t e r m s  in 
(31, 32) a r e  o m i t t e d ,  and  the i n t e g r a l  o p e r a t o r  

;: 1 ; /3 is replaced by . 

O S ~ O 
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S M A L L  S C A L E  Y I E L D I N G  

At low stress levels the plastic zone size is small compared to all geo- 
metric dimensions of Figure i. Appropriate small scale yielding solutions 
are then derived from formulae of the last sections by neglecting terms 
of order 5, s in comparison to unity. Equation (24) for the determination 
of 5 becomes 

fl fl dt _ dt _ ~ r(1/n) 
s/8 V 1  - t n o G 1  - t n n V [ - ~ 2 n - n  ) - ' 2  + n.  ' ( 33 )  

where F(x) = ;r x-I e -r dr is the Gamma function. One may show that 
o 

the ratio of s/5 = 7/~- I resulting from (33) is the same as the ratio in an 
elastic solution of the problem of Figure i. With the aid of (33) equations 
(29), (28), and (31) result, for small values of s and 8, in 

Ro 4n~ ~ (6/S) n 1 S 1 + n/2 
a = ~(2 + n) (34) 

nO 0]  2k nO cos  w[R(O) ,  R s i n  ~-- (35) R(0)  = R ° ~--, = ~-G o " 

When fi=--)0% 5 )s, and one may show that 

f 1 ( 1 - t n )  "1/2 dt 2 / n  [ 1 - ( s / 5 ) n ]  +1/2 

Then ,  u s i n g  (33), e q u a t i o n  (34) b e c o m e s  

Ro 2n F(-~) 
a - F ,  2 + n ,  

(2+n)  [ 2-n--) 

• 2 / n  1/2 

S l*n/2 , (36) 

f o r  the  m a x i m u m  p l a s t i c  z o n e  s i z e  w i t h  s m a l l  s c a l e  y i e l d i n g  n e a r  a n o t c h  
in  a p l a n e  of i n f i n i t e  w id th .  T h i s  m a y  a l s o  be d e r i v e d  d i r e c t l y  t h r o u g h  the 
f o r m a l i s m  d e s c r i b e d  a b o v e  w h e n  ~ = ~.  A f t e r  s o m e  i d e n t i t i e s  i n v o l v i n g  
G a m m a  f u n c t i o n s ,  the  l i m i t i n g  c a s e  of (36) i s  s e e n  to a g r e e  w i t h  the r e -  
s u i t s  of M c C l , i n t o c k  a n d  Hu l t . (4 )  

S O L U T I O N  A T  L I M I T  L O A D  

When 5 = "r/k = i the yield zone completely traverses the plane of Fig- 
ure i and the limit load has been achieved. By overall equilibrium, this 
occurs when ~'b = k(b-a) or s = 1 - 1//3. Rather than attempt a difficult 
limiting process, the solution for 5 = 1 is i obtained directly. The upper 
part of the ~ plane of Figure 3 is reproduced with appropriate boundary 
conditions in Figure 5(a) and mapped onto the unit Semi-circle in the ~2n 
plane of Figure 5(b). Following the same procedure which led to the solu- 
tion (19) for the Dirichlet problem of a unit semi-circle, f(~) is given by 

s I J n n-1 1 1 dt (37) 
f(~) = - ~  t ¢( t ,O)  t n _ ~n + t n _ ~-n ' 

o 

w i t h  ~(t ,  0) = - t ,  0 < t < 1 - 1//3, a n d  ¢(t ,  0) = - ( ~ - l ) ( 1 - t ) ,  1 - 1/~] < t < 1. 
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77 ~ plane 
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(b) 

Fig.5. (a) Upper half of ~ plane and (b) Its map onto unit semi-circle, for limit load conditions 

T h e  p o s i t i o n  of  the  e l a s t i c  p l a s t i c  b o u n d a r y  at  l i m i t  l o a d  m a y  n o w  be 
f o u n d  f r o m  (13).  T h e r e  r e s u l t s  

R(O) = 2 n  s i n  nO (/3-1) 
a r -i/3 o 1 - 2 t  n c o s  ne + t 2n dr ,  (38) 

and  one  m a y  v e r i f y  t h a t  R o / a  = (/3-1) a s  e x p e c t e d .  D i s p l a c e m e n t s  w h e n  
y i e l d i n g  c o m p l e t e l y  t r a v e r s e s  the p l a n e  a r e ,  f r o m  (14),  

Gw JR(0), e] 4n sin2 n0 { ! 1-1/3 t n ( l + t  n) dt 

k a  7r 2 -  ( 1 - t n ) ( ! - 2 t  n c o s  nO + f 2n) 

~ ]  t .-1 ( 1 - t ) ( l + t  n) dt t + (E-l)  3 
( 1 - t n ) ( 1 - 2 t  n c o s  nO + t 2n) 

-1/3 
(39) 

with the notch opening displacement Wo given by 

t/ t GWo _ 4n 1,1/3 t n dt + ( E - l )  . (40) 

ka  ~r (1 - t  n)( 1 +t n) ( 1 - t  n)( 1 +t n) 
o -1/3 

T h e  d i s p l a c e m e n t s  o f  (39) a nd  (40). a r e  t h o s e  o c c u r r i n g  a t  the i n s t a n t  w h e n  
the  p l a s t i c  z o n e  r e a c h e s  the  f r e e  b o u n d a r y  o f  F i g u r e  1. W i t h i n  the c o n t e x t  
o f  p e r f e c t  p l a s t i c i t y  t h e o r y ,  (is) u n l i m i t e d  f u r t h e r  f l ow o c c u r s  u n d e r  the  
f i x e d  l i m i t  s t r e s s  s ; 1 - 1 /~ .  One  m a y  s h o w  by  u p p e r  and  l o w e r  b o u n d  
t h e o r e m s  t h a t  th i s  f u r t h e r  f low o c c u r s  by  d i s c o u n t i n u o u s  s l i d i n g  a l o n g  the  
p l a n e  f o r m e d  by  the  x and  z a x e s  of  F i g u r e  1, w i th  the  p o s i t i o n  o f  the  
e i a s t i c - p l a s t i c  b o u n d a r y  r e m a i n i n g  as  g i v e n  by  (38) and  d i s p l a c e m e n t s  a s  
g i v e n  b y  (39,  4 0 ) w i t h  a t e r m  a d d e d  to a c c o u n t  f o r  the  r i g i d  b o d y  d i s p l a c e -  
m e n t ,  due  to l i m i t  d e f o r m a t i o n ,  of  the r e g i o n  y > 0 w i t h  r e s p e c t  to the  
r e g i o n  y < 0. 

S M A L L  S C A L E  Y I E L D I N G  N E A R  C R A C K S  

Many of the solutions given above take simpler forms when a = 0 (and 
from (16), n = 2) so that the notch of Figure 1 becomes a crack of length 
a. Setting n = 2, equation (33) relating s to 6 when both are ((i, as in 
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t he  case of small scale yielding, results in 

s / 6  = c o s  ~r/2~ 

S u b s t i t u t i n g  i n t o  (34,  35) o n e  o b t a i n s  

(41) 

c o s  0 (42) 

k I-R( -I w = R " w 8),e = w sin 8 (43) 
0 G o J o 

The plastic zone as given by (42) is a circular region of diameter Ro ahead 
of the crack and when /3--* 0o is in agreement with that of [4] for small 
scale yielding 'hear a crack in a plane of infinite width. It is interesting 

to note that K w = 7(2~a tan 2~--~) ½ is the stress intensity factor (13,14) in 

warping, in th~ sense that the elastic solution has a singular term of the 
form Kw(27nx) -~ in the expression for ~-vz(X, 0). Thus (42) for Ro may 
be written in the alternate form Ro = l{2w/(Trk 2) so that, in agreement 
with [3, 7], the plastic deformation near the crack tip depends on applied 
loads and geometry only through the elastic stress intensity factor when 
the scale of yielding is small. 

The subject of small scale yielding for cracks under longitudinal shear 
may be treated in an alternate way which establishes the generality of de- 
pendence on elastic stress intensity factors. With proper interpretation of 
the branch cut, one may show (13) that elastic stress solutions for cracks 
under symmetrical longitudinal shear loadings always take the form 

K 
"7"yz - i'rxz = r--~ w (44) 1/2 V2~r (x - iy) 

near the crack tip x = y = 0; other terms giving vanishing stress at the 
crack tip must be added for a complete solution. As an approximation valid 
for small scale yielding, one may then ask for the elastic-plastic solution 
for an infinite plane with semi-infinite crack along the negative x axis with 
the boundary conditions that the elastic solution of (44) is approached asympto- 
tically as Ix-iy[ ,oo. Introducing ~ = -i(~-xz + i~-vz)/k, the (x,y) plane and 
corresponding ~ plane are shown in Figures 6(a)'and (b) respectively. 

( a )  

{~)~.~ plane 

 °2j 
(b) 

COS,O = 0 

Fig. 6. (a) Physical plane and (h) Stress plane for small scale yielding near cracks 
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Solving for x-iy (44), the asymptotic boundary condition becomes 

m 2 
W 

x-iy---~ as ~ * 0 . (45) 
27rk2 ~ 2 

Noting that boundary conditions in the ~ plane may be expressed as shown 
in Figure 6(b), one easily verifies that the correct solution with the sin- 
gularity as indicated by (45) at ~ = 0 is 

K 2 
x-iy - w (1 + i___) . 

2~rk 2 ~2 (46)  

O n  t h e  e l a s t i c - p l a s t i c  b o u n d a r y  x - i y  = R ( 0 ) e  -i° a n d  ~ = e ie s o  t h a t  f o r  
small scale yielding, 

K 2 
W 

R = - - ;  R(@) = R c o s  @ , (47)  
o ~.k 2 o 

w h i c h  i s  i d e n t i c a l  to  t h e  s p e c i a l  c a s e  o f  (42)  w h e n  t h e  a p p r o p r i a t e  v a l u e  
i s  i n s e r t e d  f o r  t h e  e l a s t i c  s t r e s s  i n t e n s i t y  f a c t o r  Kw. S o l v i n g  f o r  ~ f r o m  
(46) ,  s t r e s s e s  i n  e l a s t i c  m a t e r i a l  a r e  g i v e n  b y  

K 
W 

T - iT = 
yz xz K 2 (48)  

(x w iy) i/2 

2 7 r k  2 

Thus, as noted in [15], stresses in elastic material for small scale yield- 
ing are identical to those com~outed from an elastic solution for a crack 

= i K2w/(TrkZ) = one half of the plastic zone diameter. with its tip at x ~ 

LIMIT SOLUTION FOR CRACKS 

The solution at limit load (that is, when the dimensionless applied stress 
s = I-I/B ) for cracks is readily computed from the general solutions of 
equations (38-40) by setting n = 2. The resulting expression for the elastic- 
plastic boundary when yield completely traverses the plane is 

I si ell R ( 0 )  = ( /3-1)  - - - ~  t a n ' l  
a - 1 

+ 2 l o g  - 

2 2~(/3 11 c o s  e + (~ - 1 ) 2  

- (13 - i )  l o g  ~c tn  ( @ / 2 ) ]  I s i n  @ , (49) 

with, as required physically, 

R = a(/3 - 1) = b - a . (50)  
O 

For a crack in a plane of infinite width, /3 = Q0 and the limit load is s = 1 
(or ~- = k). it is then seen from (50) that the plastic zone is of infinite 
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extent in the x direction; however, the zone extends over a length of finite 
extent in the y direction. This is seen by expanding R(8) in a series in /3 
and dropping all terms of order 1/8. For 0 ~ 0 terms linear in /3 cancel 
and there results for the elastic-plastic boundary at limit load in a plane 
of infinite width 

R(O) _ 2 Ectn(8[2)] + . a - ~- {s in  0 log ctn O~ - cos 0 (51) 

The y coordinate of points on the boundary is R(@) sin O. Letting O "0 
is equivalent to x---~oo, and R(O) sin O ~= y .2a/~r° so that the elastic- 
plastic boundary at limit load has a thickness in the y direction which 
approaches 4a/Tr asymptotically. 

Displacements of points on the elastic-plastic boundary at limit load are 
from (39) with n = 2 

cos 8 [ 482 cos2(O/2)  ~rGw JR(0), 8] = 2(8-i) ~ log 
2 k a 82+28(8-1)  cos  8 + (8-1) 2 

+sin8%an'iIia~8(8/2)II- +(8-1){-sin2(8/2)l°g[84-282(8-1)2-~ 484 sin cos2 828 + (8-1)4] 

 .in 0 t a n .  c,n { co .  0 1, co.  ° 
L82+(8_1) 2 2 -2/3(fi-1) cos 8 + (/3-1) 2 

+ sin 8 %an-i [28(8-i ) sin 0 ] t  [ 28-1 + (28-1) log (28-1) - 2(8-1) log (28) . (52) 

The c r a c k  opening  d i s p l a c e m e n t  wo at l i m i t  load  m a y  be ob ta ined  f r o m  
(52) by s e t t i n g  0 = v/2 o r  d i r e c t l y  f r o m  (40). T h e r e  r e s u l t s  

W 
O 

: ko f _1,_4 ,9, G (8-1) + ~ log (28 8 t an  "1 

2 /4~2- 4/3 + 2) :}  
- ~ (8-1)  log ~ 48 ÷ " (53) 

For large fi linear terms cancel and neglecting all terms of order unity, 
the crack opening displacement at limit load behaves as 

• 2 k a  
wo " r------G-log (2fi) as  fi > ~ .  (54) 

GENERAL CASE OF CRACKS 

Results of the last two sections are for small scale yielding and for 
limit load yielding around cracks. For the general case of cracks solu- 
tions valid at all load levels are obtained in terms of elementary func- 
tions and the elliptic functions of first and second kind 

dt ; E2(At"x) = ~ /1- -~ t  2-  (55) E I ( # ' x )  = o ~(l-t2)(l-/~zt2) o 
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E q u a t i o n  (24) w h i c h  d e t e r m i n e s  the u n k n o w n  p a r a m e t e r  5 = ~'i /k in t e r m s  
of  s = T/k  and  ~ = b / a  t a k e s  the f o r m  

E2(52,1) - (1-5 2) Ei(52,1) 
: ( 5 6 )  

[ E 2 ( 5 2 , 1 )  - E 2 ( 5 2 , s / 5 ) ]  - ( 1 - 5 2 ) [ - E 1 ( 6 2 , 1 )  - E l ( 6 2 ,  s / 5 ) ]  

The implicit nature of this equation causes some difficulty for the effective 
determination of 5. Therefore, graphs of 5 in terms of the dimensionless 
net-section stress (that is, average stress on uncracked portion of x axis) 
~'n/k = (l-a/b)-l~'/k, as obtained from computer" calculation, are given for' 
various values of the crack length to plane width ratio, a/b, in Figure 7. 

K 

8 As A FUNCTION OF NET SECTION STRESS 
AND CRACK DEPTH TO W.OTH RATLO 
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Equations for the position of the elastic-plastic boundary and correspond- 
ing displacements may be written in terms of elliptic functions; these, 
however, involve the generally untabulated functions of the third kind with 
a complex parameter, and are therefore more readily computed directly 
from the single integrals of (28) and (31) with n = 2 and 5 as determined 
from (56). Of more direct physical interest are tile maximum plastic zone 
size Re and crack opening displacement we which fortunately involve only 
the tabulated elliptic functions of (55). 

Setting n = 2 in (29) and using (56) to simplify, there results for the 
maximum zone size 

Re 2 [ ( f i -1 )E  ( 5 2 , 1 ) -  fiE (52 s/5)]  
= (t3 - i  ) - T 2 z , 

- 2--fi tan'1 I 1 - 52 ] 
V(I-62s2)(62s-2 -1) 

(57) 
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When ~] = oo one may find R o by the formalism given earlier or by in- 
serting (56)into (57)and appropriate limiting. There results for the max- 
imum plastic zone size in a cracked plane of infinite width 

~- s 2  2 E1  ( s 2 , l )  (58) 

A f t e r  s o m e  t r a n s f o r m a t i o n s  of  c o m p l e t e  e l l i p t i c  f u n c t i o n s  w h i c h  i n v o l v e  
d i s t o r t i n g  the  i n t e g r a t i o n  p a t h  of  (55) to a c o n t o u r  a r o u n d  the  b r a n c h  c u t  
-1 < t < + 1 a n d  t h e n  to  a c i r c l e  of  r a d i u s  1 / s  in  the  c o m p l e x  t p l a n e ,  
t h i s  b e c o m e s  

= a [ / - 1  + 2 1  + s 2 E 2  ( 2s  2' 1 ) l  ) , (59) R 
o ~r 1 - s  2 1 + s  

in agreement with the result obtained by Bilby et al. (i6) directly from an 
integral for Ro given in [4]. 

The crack opening displacement, Wo, is from (32) with n = 2 

Gw 
o 

k a 
_ (e_l) _ ~2 (1+52) [(fl-l) E l (52,1) -/3 E 1 (52,s16)] 

[ -s252 +_ ] + log [vq-s25  

7r ( 1 - 6 2  s 2 ) ( 6 2 s  "2 -1)  

For a plane of infinite width, this becomes 

k a  2 2) w = ~- -  { -1 + --Tr (1 + S E 1  (S 2 , 1 ) ]  

(6o) 

(6i) 

Numerical results for the plastic zone size and crack opening displace- 
ment are not tabulated here; however, as indicated in the next section, 
these may be readily obtained from the graphs of Figures 8 to 12 dealing 
with the application of results to the determination of fracture criteria. 

A P P L I C A T I O N  T O  FRACTURE PREDICTION 

The preceding sections have given a solution to the elastic-plastic prob- 
lem of a notched body subjected to a uniform applied stress field, with 
particular attention to the case of cracks. We now turn to the application 
of these results in the prediction of the fracture of bodies containing crack- 
like flaws. 

The approach taken here will be, as in [3], to ignore questions as to 
the details of the process of material separation at the crack tip, and to 
base a fracture criterion on parameters which describe, according to the 
continuum solution, the local state of affairs at the crack tip in terms of 
applied stress and geometrical dimensions. As will be seen subsequently, 
such an approach is not entirely satisfactory as different measures of the 
crack tip deformation lead to some discrepancies in resulting fracture 
criteria. 
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Consider first a ease where the specimen fails at low stress levels with 
the plastic zone size at fracture negligible in comparison to all geometric 
dimensions. Such a result may always be forced by choosing a sufficiently 
(although sometimes impractically) large specimen w~ith a long crack. In 
this case the results of an earlier section titled "Small Scale Yielding 
Near Cracks" are appropriate, and it was shown there that the entire local 
stress and deformation field depended on applied loads and geometry only 

through the elastic stress intensity factor Kw = ~-(2/3a tan ~)½ 

Thus small scale yielding fractures occur when Kw reaches some critical 
value, say K~. With the aid Of equation (47), the plastic zone size, Rfo, 
at fracture in a small scale yielding experiment is 

R f -- 1 (62) 
o ~ k2 

and,  f r o m  (43), the c r a c k  open i ng  d i s p l a c e m e n t  a t  f r a c t u r e  is  

wf o k R f o (63) 

For the following derivation of failure criteria appropriate when yielding 
is not on a small scale, it will be convenient to view Rfo, as defined by 
(62), as a characteristic length describing a given material. 

Suppose that fracture occurs when the strain at some point ahead of the 
crack tip, or the average strain taken over some typical line element ahead 
of the crack, reaches a critical value. From (2) it is noted that the strain 

kRo in the plastic zone along points on the x axis is given by yyz(X, 0) = ~ x 

Thus such a fracture criterion is equivalent to one based on the achieve- 
ment of a critical plastic zone size, R o, and from (62), this value is 
I% o = Rfo. For a given ratio of crack length to plane width, a/b = l/E, one 
may determine Ro/a in terms of the applied stress from (57) (since 5 is 
known in terms of a/b and ~-/k from (56), or equivalently Figure 7). The 
crack length corresponding to a given fracture stress:and plane width to 
crack length ratio is found in dimensionless form by sett~g the left side 
of (57) equal to R~/a. The resulting equations for the dimensionless net 
section stress at fracture, "rfn/k, in terms of dimensionless, crack length, 
a/Rfo, are graphed in Figure 8 for various size ratios a/b. Note that if 
the untracked plane width, b-a, is not greater than Rfo, limit conditions 
govern the fracture stress as indicated by the horizontal portions of Curve 
in Figure 8 at the net section stress Tn/k = I. One may determine the 
range of crack lengths, a/Rfo, corresponding tofailure ~t limit load by 
observing that b - a ~ i%o implies that a/Rfo ~< (b/a - i)- . The fracture 
criteria of Figure 8 alternately may serve to determine the plastic Zone 
size Ro. The ratio a/Rfo from Figure 8 is equal to a/Ro, as given by (57), 
for the same net stress and a/b ratio. 

One may base a fracture criterion on other parameters describing the 
local deformation. _An appealing choice is to suppose fracture occurs when 
the crack opening displacement , Wo, reaches a critical value of w o = 

f k f 
w o =~R o, according to (63). In terms of strain, w o represents an aver- 

age of the non-vanishing strain component ~'0z over a small semi-circular 
arc near the crack tip in the plastic zone. One may determine the ratio 

Gwo from (60); when w o = wfo this is equal to Rfo/a. Therefore, the ka ° 
crack length corresponding to a given fracture stress and plane width to 
crack length ratio is found in dimensionless form by setting the left side 
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of (60) equal to Rfo/a. Resulting equations for the dimensionless net section 
stress at fracture, ~'a/k, in terms of dimensionless crack length, a/Rfo, 
are graphed in Figure 9 for various size ratios a/b. In analogy with pre- 
vious remarks, the horizontal portions of curve at "rn/k = 1 correspond 
to cases where the limit load is achieved before the crack opening dis- 
placement required for fracture is attained. The crack opening displace- 
ment, w o, may be obtained from Figure 9. For a given net section stress 
and crack length to plane width ratio, the corresponding value of a/Rfo is 
equal to ka/Gwo as given by (60). 

The fracture criteria of Figures 8 and 9, based respectively on a critical 
plastic zone size and a critical crack opening displacement, determine 
fracture conditions in terms of Rfo, the plastic zone size at fracture in a 
small scale yielding experiment for which the elastic stress intensity fac- 
tor essentially controls failure. This need not be determined directly, but 
instead may be inferred by matching the results of a singl e experiment 
with one of the fracture criteria. 

The Griffith-lrwin fracture criterion, in the absence of empirical cor- 
rections for plastic yielding, is based on the results of an elastic stress 
analysis, suggesting fracture to occur when the elastic stress intensity 

f a c t o r ,  K w = 'T (2~a tan  ~%'~)½, a t t a i n s  a c r i t i c a l  v a l u e  K w = Kfw. To  f a -  

c i l i t a t e  c o m p a r i s o n ,  Kfwmay  be e x p r e s s e d  in t e r m s  of Rfo by  (62) so  tha t  
the ne t  s e c t i o n  s t r e s s  at  f r a c t u r e  i s ,  a c c o r d i n g  to th i s  c r i t e r i o n ,  

n = ~ ctn ~-~ (64) 
k 1 _ a  

b 

Figures i0, ii, and 12 present a comparison of the Griffith-Irwin, plastic 
zone size, and crack opening displacement criteria for crack length to 
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plane width ratios of 0 (infinite width), 2/5, and 4/5, respectively. The 
criterion based on the elastic solution is seen to be at variance every- 
where but at low stress levels. More alarming, however, is the fact that 
the two different measures of local crack tip deformation, as taken from 
the elastic-plastic solution, are considerably at variance with each other 
for all three size ratios. 

This discrepancy suggests the necessity of considering the micro-struc- 
tural details of material separation in deriving a satisfactory fracture cri- 
terion; the expedient method of basing fracture conditions on parameters 
from a continuum solution describing the local crack tip deformation is 
unambiguous only for fractures at low net section stresses. Methods of 
relating continuum solutions to micro-structural details have been discussed 
by Rice, (17) in an examination of a Griffith-type theory employed in con- 
junction with elastic-plastic continuum solutions, and by McClintocko(18) 
assuming fracture to be due to the growth and coalescence of voids in front 
of a crack. The work of [17] points out the necessity of obtaining realistic 
work-hardening solutions for prediction of brittle fracture strength via an 
energy balance approach for ductile materials. 

While an unambiguous measure of fracture strength cannot be obtained 
solely from continuum considerations, it appears likely that the fracture 
criterion here presented, as based on a critical plastic zone size (or, 
equivalently, on strains in front of the crack line), does give a lower bound 
to the fracture strength of a real material. First, being based on local 
strains instead of on some averaging of the deformations throughout the 
plastic zone, it appears to be the local measure from a perfect plasticity 
solution most at variance with elastic predictions; further, being based 
on perfect plasticity, it is expected to over-estimate the severity of local 
deformations in actual work-hardening materials. It is therefore suggested 
that the elastic Griffith-lrwin criterion and the elastic-perfectly plastic 
critical zone size criterion provide, respectively° upper and lower bounds 
to the size dependence of fracture strength, in the sense that the behavior 
of real materials lies somewhere between the extreme criteria in Figures 
i0- 12. 

The elastic-plastic response to fluctuations in applied load is of interest 
in studies dealing with fatigue crack propagation. When the loading is of 
a cyclic nature with constant amplitude and fixed mean value, the complete 
plasticity solution is readily obtained from our results for monotonic loading. 
Suppose a loading T is applied and then decreased an amount AT so that 
the applied stress is then T - AT. The unloading induces reverse yielding, 
and so long as the zone of reversed yielding is contained within the original 
plastic zone, the effective yield stress is 2k. Therefore, the size and 
shape of the reversed yield zone is given by the formulae for monotonic 
loading with T replaced by AT and k replaced by 2k. Similarly, the change 
in plastic strains and displacements due to unloading are given by previous 
expressions with the same substitutions. This simple procedure is valid 
since the original plastic flow is radial in the sense that the direction of 
the stress vector is constant at points undergoing yielding. When the ap- 
plied stress is increased from ~" ~T tO T, completing the cycle, the 
original solution is recovered. 

In particular, if the body is completely unloaded (AT = T), one may show 
for the case of small scale yielding that the reversed plastic zone size 
is one quarter of the original zone size and that the residual crack opening 
displacement and strains in the reversed zone are one half the original 
values. These results are pertinent to experimental studies of plastic de- 
formation carried out after unloading. 

Fracture under tensile loadings, rather than by longitudinal shearing, 
is of primary interest. Thus the results of this paper on finite width ef- 
fects, as well as recently obtained solutions for the anti-plane loading of 
plastically anisotropic (19) and strain hardening (2°'21) materials~ cannot 
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reliably be made a basis for fracture prediction until the extent Of rele- 
vance to in-plane loading situations is better established. Certainlyj in 
seeking grounds for analogy, it is unreasonable to expect any direct cor- 
respondence in detailed features of the crack tip strain and stress dis- 
tribution. Rather, analogy should be sought on the basis of gross features 
or integrated effects of the analysis. For example, predictions of plastic 
zone sizes, crack opening displacements, and in particular, resulting cri- 
teria for stable and unstable crack liropagation, as well as the modifica- 
tions accruing from variations of specimen geometry, yield conditions, 
and hardening behavior, should form the basis for attempts at comparison 
with tensile experimental results. MeClintock and Irwin (v) have pQinted 
out, for example, that longitudinal shear predictions of the amount of slow 
growth preceding fracture and plane stress size effects are in agreement 
with the trend of available data. The possibility of a hydrostatic buildup 
of stress causes ambiguity in the choice of a yield strength, to replace k 
of the shear analysis, under plain strain conditions. To the extent that 
slip-line theory (12) is appropriate for compressible elastic materials, any 
slip line emanating from the crack surface and crossing the line of sym- 
metry in front of the crack swings through a 90 ° angle, so that the ef- 
fective yield strength might be taken as (l+rr/2) times the tensile strength, 
as in the limit solution for a smooth punch. (12) This is generally incon- 
sistent at high stress levels, however, unless the geometry is of the double 
edge notch type(v) so that the hydrostatic stress build-up persists up fro 
limit load. 
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P~SUIvlE - Une solution lingaire exacte ,  $1astique - parfai tement  plastique, est prgsentge pour le problgme 
d ' u n e  entai l le  aigue (ou, quand 1 'angle  de 1 'enrai l le  est ggal ~ z~ro, und fissure), dans un plan d 'g tendue  
finie, sujette ] des eontraintes antiplanes qui induisent une contrainte et tree dgformation de c isai l lement  
longitudinale. 

Des solutions gSn~rales pour los coordonnges physiques qni correspondent aux eontraintes donnges, la position 
de la l imite  glastique - plastique, et les dgplaeements  qui en rgsultent sont donnges sous forme d ' in tggrales  
simples finies. 

Le eas des fissures est disentg en dgtail et des solutions de forme fermge pr~sentges en terme de functions 
glgmentaires et elliptiques. Les rgsultats numgriques sont donngs et los applications de la sointion au d~velop- 
pement  d ' un  crit~re de fracture ainsi Clue quelques difficultgs inhgrentes sont disout~es. 

ZUSAMMENFASSUNG - Eine exakte linear elastisch-perfekt plastische LSsung wird ffir alas Problem einer 
scharfen Kerbe (odor, wenn der Winkel der Kerbe null ist, fdr einen Anriss), in einer Ebene mit  endlinher 
Breite gezeigt ,  die mi t  einer L.~ngsschubspannung beansprucht wird. Al lgemeine  LiSsungen t~r Koordinaten die 
den gegebenen Soannungen entsprechen, ffir den Oft der elast isch-plast ischen Grenze sowie ~ r  die dazuge 
hSrenden Verformungen werden in Form yon endlichen Einfachintegralen gegebenen.  

Der Fall tier Risse wird im Detail  behandelt .  Die LBsungen sind in geschlossener Form, in e lementaren nnd 
elliptischen Funktionen angegeben.  

Numerische Resultate werden gegeben und die Anwendung der LBsungen zur Entwicklung der Kriterien der 
Bruchmechanik,  sowie einige anhaftende Schwierigkeiten werden besprochen. 




