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This paper deals with the statistical distribution of the first-occurrence and first-recurrence times of the 
crossing of a given level in a continuous random process. Approximate forms of the first-occurrence and 
first-recurrence time densities are found by considering the successive crossings to form a renewal process. 
A relatively simple exponential distribution is found to give an appropriate representation of the limiting case 
when the crossings of the level under consideration are statistically rare events. Xumerical examples are 
worked out for some stationary Gaussian processes. The method is of use in evaluating survival proba- 
bilities for randomly excited mechanical systems subject to failure upon occurrence of a sufficiently 
high load. 

INTRODUCTION 

.MECHANICAL system subjected to a. random loading may fail when the stress in a critical 
member reaches a sutficiently high level. This type of 
failure is generally by fracture or by excessive perma- 
nent deformation rendering the system inoperative. If 
the stress has a finite probability of exceeding the high 
level, then failure is possible, and an important problem 
is to find the probability that the system can operate 
without failure for some given time. 

More precisely, the following problem is considered. 
Given a continuous and differentiable random function 

x(t), one wishes to find the probability that the value 
x=a will not be exceeded in the time interval (0,t). This 
problem is called the first-occurrence time problem and 
the probability density po(a,t) is the first-occurrence 
density, in the sense that po(a,t)dt is the probability, 
given x(0) <% that x(t) first crosses the level x=ot in the 
time interval (t, t-{-dt). If failure is defined as the first 
exceedance of x=a, the probability of failure P•(a,T) in 
time T may be expressed in terms of the first-occurrence 
density po(a,t). The probability of failure in (0, T) is 
unity if x(0)>a, and the probability of failure in (0, T) 
is fo•po(%t)dt if x(0)<•. Thus, where • is the prob- 

ability that x(0)>a, 
T 

Pe(ot, T)=e,•-I-(1--e,•) f ø po(%t)dt. (1) 
For stationary processes, the first-occurrence time 

density is closely related to the first-recurrence tin'e 
probability density p•(a,r), where p•(a,r)dr is tke 
probability, given x(t0)=a and •(t0)<0, that the next 
crossing of x=a occurs in the time interval (/0q-'r, 
to+r+dr). Thus, p•(a,r) is the density for the time 
between successive downward and upward crossings of 
x=a. To show the relation between the first-occnrrence 

xct) 

Fro. 1. First-occurrence and first-recurrence times. 
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and first-recurrence densities, consider a stationary 
random function x(t) and suppose that x(0)<a. With 
reference to Fig. 1, the time t at which x=et is first 
crossed is the fint-occurrence time. Since it is given that 
x(0) <a, the origin t = 0 falls in a time interval between 
a downward and an upward crossing of x=a. Referring 
again to Fig. 1, this interval has duration r, where r is 
a tint-recurrence time. The probability density for the 
first-occurrence time may be written, by the law of 
conditional probability, as 

(2) 

where po(ot,t[r) is the tint-occurrence time density, 
given that the recurrence time interval including the 
origin is of duration r, and where q(%r)dr is the 
probabihty that the recurrence time interval including 
the origin has a duration between r and r+dr. 

Changing the point of view slightly, consider the 
random process of Fig. 1 as a fixed curve and suppose 
that the time axis is attached to the curve so that the 

origin t=0 has uniform probability of falling at any 
point where x is less than a. Then, if it is given that t = 0 
falls in an interval of length r, the location of the point 
t = 0 is uniformly distributed on the interval r, and the 
time t to the end of the interval r (that is, the first- 
occurrence time) has also a uniform distribution. 
Thus, 

po(%tlr)=l/r if t<r 
= 0 if t>r. (3) 

The quantits' q(a,r)dr is the fraction of the time axis 
(for which x<o0 taken up by recurrence intervals 
between r and r-t-dr. The fraction of such intervals is 
pr(a,r)dr and, since the duration of each such inter- 
val is r, q(a,r) is proportional to rpr(%r). Normal- 
izing, 

= (4) 

where (r),, is the mean recurrence time (or the average 
time between successive downward and upward cross- 
ings of x=a). Inserting Eqs. 3 and 4 in Eq. 2, the rela- 
tion between the tint-occurrence and first recurrence 

densities becomes 

I f= 1 po(a,t) = (-• (r)•,,L Jo a 

There is a simple relation between moments of po(a,t) 

and p,(%r). By direct calculation, 

(r)•, t"p•(a,r)dtdr 

T n4-1 

= (6) 
It is interesting to note the forms of po(%t) and 

p•(ot,r) for a random process in which the probability of 
an upward crossing of x=a is independent of the past 
history of the process. In this case, po(a,t)=p,(ot,t), 
since these differ merely by being conditioned on differ- 
ent past events that are here irrelevant. In this case, 
Eq. 5 becomes a simple integral equation with the 
readily verified solution po(a,t)=p•(a,t)=(r)•exp 

The expected number of upward crossings N• + of 
x=a per unit time appears frequently in the work to 
follow. This is given as • 

œ (7) 

where g,i(u,v; t) is the joint probability density of x(t) 
and •(t), represented, respectively, by u and v. Clearly, 
for stationary processes, N?(t) is independent of t, and 
in such cases the notation N, + is used. 

The solution of tint-occurrence and first-recurrence 
problems is a rather difficult matter, and a tractable 
exact solution is known • only when x(t) is a Markov 
process. Apparently, work done to date on occurrence 
and recurrence problems for non-Markov processes has 
dealt primarily with the determination of the interval 
distribution between successive zero (or mean) cross- 
ings. Of particular intereat ig the work by Slepian a and 
certain approximations, •,•,a the latter a containing a corn- 

• S. O. Rice, "Mathematical Analysis of Random Noise," in 
Sdected Papers on Nois• and Stochastic Processes, N. Wax, Ed. 
(Dover Publications, Inc., New York, 1954), pp. 133-294. 

• A. J. F. Siegert, "On the First Passage Time Probability 
Problem," Phys. Rev. 81, 617-623 (1951). 

a D. Slepian, "The One Sided Barrier Problem for Gaussian 
.Noise," Bell System Tech. J. 41, 463-501 (1962). 

• J. A. McFadden, "The Axis Crossing Intervals of Random 
Functions--II," IRE Trans. Inform. Theory 4, 14-24 (1958). 

a M. S. Longuet-Itiggins, "The Distribution of the Intervals 
between Zeros of a Stationary Random Function," Phil. Trans. 
Roy. Soc. (London) A254, 557-599 (1962). 
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parison of the results of several investigators. The 
technique used in Sec. I to solve approximately for the 
recurrence density pt(or, r) is similar to the technique 
used elsewhere 4 for the zero-crossing problem. q'he 
method of inclusion and exclusion may be used to write 
an exact expression for pr(%r), which, while being 
untractable, does however serve as a.%tarting point for 
the approximation of the next sections. Following 
BarfleWs general development 6 for first-passage times, 

Upon making the renewal approximation, the various 
integrantis of Eq. 8 becolne 

p +• t_(a,,',r)•p+l+ (ot, r--r)p+l_(a,r) 

p +++l-(a,r,s,r)'•P+l+ (% r-- s)p+l+ (% s-- r)p+l-(a,r) 
: : (9) 

where p+•_(a,t)d! and p+•+(ot,t)dt are probabilities of 
upward crossings of x=ot in (6 tq-dt), given, respec- 
tively, downward and upward crossings of x=a at 
t=0. In view of Eq. 9, the inclusion-exclusion formula 
Eq. 8 for p•(a,r) becomes 

+fo•*p++.l-(a,r,s,r)dsdr P+I+(-. 

for[ q- P+I+(% r--s)p+l+(% s--r) 

+..., (8) .... . 00) 

where p++...++l_(%r,s,".,w,r)drds...dwdr is the prob- 
ability, given a downward crossing of x=o• at t=O, that 
upward crossings of x=ot occur in the time intervals 
(r, rq-dr), (s, sq-ds), ..., (w, wq-dw), and (r, rq-dr). 

I. RENEWAL-PROCESS APPROXIMATION 

Owing to the renewal-process approximation, all of the 
integrals appearing in Eq. 10 are convolution integrals. 
Thus, the Laplace transform of any multiple integral 
appearing above is the product of the Laplace trans- 
forms of the functions in_the integrand. Introducing the 
transforms through the notation 

The calculation of terms beyond the first in the exact 
expression Eq. 8 above for the first-recurrence tilne 
density p,(a,r) is prohibitively difficult and, indeed, the 
calculation of the general term is impossible, except for 
the most trivial of random processes. Thus, an approxi- 
mation must be constructed that yields a tractable 
restilt for p•(a,r). For small values of r, the first term 
in the series snflices as all remaining terms are small. 
But for larger values of r, this method is quite inade- 
quate, and an approximation valid for all time must be 
found. The procedure used here consists of considering 
the crossings of x=a to form a renewal process. That 
is, we approximate the probability of an upward cross- 
ing of x=a, given several past upward crossings and the 
downward crossing at t=0, by the probability of an 
upward crossing of x=% given ouly the last prior 
upward crossing. When x(t) is a stationary process (as 
is assumed throughout this section), the rene•-al 
approximation results in a considerable simplification 
of Eq. 8. Further, it seems intuitively clear that for 
large a, when the upward crossings of x=a are on the 
average widely spaced in time as comparcd to the 
average time between mean crossings, the probability 
of an upward crossing should depend ahnost exclusively 
on the last prior-given upward crossing. 

a M. S. Bartlett, A• Introduction to Stochastic Processes (Cam- 
bridge University Press, London, 1960). 

one has 

f. (.,s) = f+,_(.,s)- If+l+ (.,s)]f+,_(o,.s) 
+ (%s) .... 

or 

f, (%s) = [-f+l- ½,s)]/[-1 q- f+l+ 

(12] 

Multiplying both sides of the above equation by the 
denominator of the right-hand side, inverting the trans- 
form, and remembering that a product of transforms 
inverts into a convolution integral, one obtains 

p•(a,r)q- p•(et,t)p+,_t(ot, r--t)dt--p+,_(a,r). (13) 

Equation 13 has a very simple interpretation and coul] 
be written down immediately. In words, given a down- 
ward crossing of x=a at t=0, the probability of an 
upward crossing in (r, r+dr) is the sum of the prob- 
ability that the first crossing occurs in (r, rq-dr) an] 
the probability that the first crossing occurs for t<r, 
with a later upward crossing in (r, rq-dr). 
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Application of the above equations to particular 
stationary random processes requires a knowledge of 
p+l-(a,r) and p+l+(a,r). These may be expressed in 
terms of the joint density of x(t) and its first derivative 
at times t=0 and t=r. Let g(u,v; u',v'; r) be the joint- 
probability density of x(0), 2(0), x(r), and 2(r), which 
are represented by u, v, u', and v', respectively. The 
probability of a downward (or upward) crossing of 
in a time interval dt is N•+dt, where X•+ is (Eq. 7) the 
expected number of upward crossings of x=a per unit 
time. Thus, the joint probability of a downward crossing 
of x=a in an interval dt at t=0 and am upward crossing 
in an interval dr at t= r is N?dlp+l_(%r)dr. But this 
is also given by the probability that 
q-12(0) Idt with •.(0)<0 and that a- I:•(r)Idr<x(r) 
<a with o•(r)>0. Thus, 

N?dtp+l_ (a,r)dr 

= g(u,v; u',v'; r)dudu'dvdv'. 
oo --I•'ldr • a 

04) 

Carrying out the inner two integrations, 

p+•-(•,•) = I vV I g½,v; •,v; Od•,dV. 

The mean recurrence time (r)•, (that is, the average 
time between successive downward and upward cross- 
ings of x=a) is 

•,->•,,= ,-/,&•,,-)g,-=--[f&•,x)]•=o. (20) 
Os 

Computing the derivative of the transform from Eq. 19, 
yields 

( o/ox)[/•(o•,s) ],=o= - (1/•v.+) 
x [1+ f*+•+ 0,0) - f*+•_ 

or (21) 

N•+ l J0 ' 

Higher moments of the recurrence time are related to 
moments of the first-occurrence time by Eq. 6, and may 
be calculated from 

(r") •*= r"P•(a,r)dr=(--1)" •j-•f•(u,s) . (22) Os --1•=o 

Similarly, 

p+l+(a,r) N• + Ivy Ig(a,v;a,v ; r)dvdv'. 06) 

A general expression for the nth moment, valid for any 
% seems difficult to obtain. However, particular mo- 
ments may be found and, after some algebriac manipu- 
lations, results for {r=)• and (ra)•, are 

For large r, the values of x(r) and a•(r) become inde- 
pendent of x(0) and •z(0), and g(%v;a,v'; r) approaches 
g•;(a,v) g,i(a,v'). 2•he double integrals in Eqs. 15 and 
16 approach (:Y=+)• and, thus, 

lira p+l-(a,r)=lira p+l+(a,r)= X?. (17) 

(,-'X, .= 0-)•,. i+ 
_V 

(23) 

Since p+l-(a,r) and p+l+(a,r) remain finite as r-• •, 
their Laplace transforms have singularities of the form 
X?/s. It is convenient to remove this singularity by 
defining 

./'*+1+(",•) = f+l+ (o•,x)-_V?/s 

(18) 

Thus, Eq. 12 for the Laplace transform of the recurrence 
density becomes, upon multiplying numerator and 
denominator by s, 

6 

-%+ Jo 

3ff 
The integral 

(24) 

f,(•,•) = Dv?+u*+•_(&,O]/Dv?+x+U*+•+ ½,s)-1. 
(19) • p•(a,r)dr=f,(a,O) (25) 
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should yield unity. It is re•tdily verified from Eq. 19 
that Jr(or,O) = 1, and, thus, the renewal process approxi- 
mation gives a result for pr(c•,r) that satisfies this basic 
restriction on a probability density. It is perhaps 
surprising that the renewal-process approximation also 
gives the correct mean recurrence tilue; this restilt is 
proved in Appendix A. 

The renewal-process approximation is applied, in a 
later section, to provide numerical examples of the 
first-occurrence density for some special cases of 
Gaussian processes. Summarizing briefly, the method of 
calculation is first to compute p+l-(a,t) and p+l+(a,t) 
from the joint-probability densities of x(t) and 5;(t) as 
in Eqs. 15 and 16. Then, the mean recurrence time 
(r),, is computed from Eq. 21, and the recurrence 
density p,(ot, r) from the renewal integral Eq. 13. The 
first-occurrence density po (%t), necessary for the compu- 
tation of the probability of failure given in Eq. 1, is 
deternfined from Eq. 5 in terms of (r)• and p•(a,r). 

II. LIMITING FIRST-OCCURRENCE DENSITY 

Since, in applications, one is generally concerned with 
the statistically rare crossings of a high level a, it is of 
considerable interest to investigate the limiting form of 
the first-occurrence density as ot approaches infinity. 
Some simple arguments, given below, suggest an 
exponential distribution of first-occurrence times. How- 
ever, a rigorotis proof has not been obtained and some 
of the difficulties encountered in this connection are 
pointed out. 

Results for the limiting distribution are derived in 
form valid for both stationary and some nonstationary 
randran processes. It is convenient first to redefine the 
first-occurrence time density so that po(%t)dt is the 
probability that the first upward crossing of 
occurs in the time interval (t, t-Fall). This differs from 
the previous definition in that it is no longer given that 
x(0)<a; the difference is unimportant, since for large 
a there is a negligible probability that x(0)>a. The 
probability of the first upward crossing of x--it in 
(t, t+dt) is the product of the probability of an upward 
crossing in (t, tq-dt), given no prior upward crossing in 
(O,t), and the probability of no prior upward crossing. 
Thus, 

where u[a, t l (O,t)]dt is the probability of an upward 
crossing in (t, tq-dt), given no prior upward crossing in 
(0,t). Solving Eq. 26 for the first-occurrence densit.,,', 

The definition of (0,t)] suggests that, for large 
a, #[,•,tl (0,t)] approaches N?(t). Consider first the 
case when t is slnall. Here, one has, regardless of the 
value of a, (O,t)]•'•X?(t) (with an equality 
holding as t --• 0), since the probability of a crossing in 
(0,t) prior to the crossing at t is correspondingly small. 
When t is not small, the same approximation is sug- 
gested for large values of a, since the crossings of x=c• 
will then be statistically rare events and prior crossings 
may be expected to have a negligible influence on the 
probability of a crossing in (t, t-kdt). Thus, for large 
•[a,t I (0,t)•.Y?(t), and Eq. 27 yields, for the limiting 
first-occurrence time density, 

po(a,t)?•-X?(t)exp{ (28) 

For stationary processes, N?(t)=N• +, a constant, 
and Eq. 28 becomes 

po(ot,t)•'•'•X?e -•'•*'. (29) 

The corresponding recurrence time density may be 
found directly from Eq. 5. Noting that the mean 
recurrence time (r)• approaches 1IN, + for large % one 
has 

p • ( cq r ) •--•-N •+ e - •+ •. (30) 

Another way of viewing Eq. 28 is as follows. Owing 
to the very large average time interval between excur- 
sions above x=ot and the comparatively short duration 
of the excursions, one may view the excursions above 
x--a as a random process of point events in time occur- 
ring independently at a mean rate N,?(t). It is well- 
known ? that such a process leads to an exponenti• 
distribution identical to Eq. 28 for the waiting time 
before occurrence of an event or, in present terminology, 
the first-occurrence time. 

The approximate first-occurrence time density for 
large a given by Eq. 28 requires only a -knowledge of 
N?(t), which is readily computed from Eq. 7 once the 
second-order joint-probability density g• (u,v;t) of x(t) 
and c•(t) is known. This results in a considerable simpli.- 
fieorion when compared to the renewal-process approxi- 
mation of Sec. I or when compared to a procedure 
based on retaining only, say, the first two terms in the 
inclusion-exclusion series. Both of the latter approxi- 
mations require a knowledge of the fourth-order joint 
density of x(t•), •(t•) x(t•), and œ(to_). Aside from com- 
putational difficulties that may arise even if thi• 
density is known, the information available on a particu- 
lar stochastic process may not be sufficient to determine 
the fourth-order density. For example, in the case of 

• E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 
1962). 
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stationary Gaussian processes, the second-order density 
requires only a knowledge of the mean of x and variance 
of x and •; the fourth-order density requires in addition 
that the correlation function of the process and its 
first two derivatives be known for all time. Further- 

more, the second-order density g•(u,v) may be found s 
as the stationary solution to the Fokker-Planck Equa- 
tion for a general class of nonlinear dynamical systems 
subjected to white excitation, leading 9 to expressions 
for A:a + in terms of the system potential energy at the 
level x=a. Corresponding results are unknown for the 
fourth-order densities of such systems. 

Equations in some respects similar to Eqs. 29 and 30 
have been given, •ø.n where, to in the present notation, the 
relation p•(ot,t)=2N•+e -2•'•+t is obtained and where n 
the relation po(a,t)= 2N,+e -2•'•+t is obtained. That the 
first result •ø is inappropriate is readily seen by noting 
that it gives a mean recurrence time (r)•.= 1/2N?, 
instead of the correct 1/N• + for large a. The second 
result n is similarly inappropriate, since it yields 
po(a,0)=2N• +. But, from Eq. 5, it is clear that po(a,0) 
= (r)• •, which approaches 

Defining failure as the first exceedance of x=at, the 
probability _Pt(at,T) of failure in time T is from Eq. 1, 
after using Eq. 28 for 

{ [( ]} P,(a,T)=,•+(1--e.) 1--ex]3 -- N,?(r)dr . (31) 

Methods for determing upper and lower bounds on the 
failure probability P•(a,T) for processes starting at 
x(0)=0 are -known? Generalizing these results to 
account for processes that do not necessarily start at 
zero, one obtains an upper bound by noting that the 
probability of failure in dT is 

dP,(% T)= P,(a, T-I-dT)-- P,(at, T) 

since the probability that x(t) <a for all points of (0, T) 
is less than the probability that x(t)<a for any one 
point of (O,T). Integrating subject to the initial condi- 
tion P•(a,O) = •', 

< x? (33) 

Comparing with Eq. 31 and noting that 1--e-'<x for 
any positive x, it is seen that the first-occurrence density 
approximation of Eq. 28 yields through Eq. 31 a 
failure probability always below the upper bound of 
Eq. 33. A lower bound to the failure probability is found 
by writing 

P•(a,T) =prob{ max 
O<t<T 

>prob{x(t)>a for any t in (0, T)}; 

P,(a, T) >• •(t), for any t in (0, T). (34) 

Here, • (t) is the probability that x(t)>a. For a station- 
ary process e.(t)=e•(0)=e• for all l, and thus the ex- 
pression for Pi(a,T) given by equation Eq. 31 is always 
above the lower bound of Eq. 34. There is no obvious 
reason why this expression should satisfy the bound of 
Eq. 34 in the general case of nonstationary processes, 
and apparently each case must be checked separately. 

In spite of the plausibility of the result, a convincing 
proof that p,,(at,l) tends to the exponential distribution 
of Eq. 28 for large ot h•s not been obtained. Sufficient 
conditions under which Eqs. 28-30 result from both the 
densities as given by the renewal-process approximation 
of Sec. I and as given by exact inclusion-exclusion 
series have been discussed2 a Essentially, the type of 
conditions required are, in the stationary case, 

=prob{ max x(t)<a and max x(t)>a} 
0<,<r 

<prob{x(T)<a and max 
T<t<T+dT 

(32) 
dP •(ot, r) _< 3,r ? ( T)dT, 

s T. K. Caughey, "Derivation and Application of the Fokker- 
Planck Equation to Discrete Nonlinear Dynamic Systems Sub- 
jeered to White Random Excitation," J. Acoust. Soc. Am. 35• 
1683-1692 (1963). 

• S. H. CrandaIl, "Zero Crossings, Peaks, and Other Statistical 
Measures of Random Responses," J. Acoust. Soc. Am. 35, 
1693-1699 (1963). 

•0 M. Kac and D. Slepian, "Large Excursions of Gaussian 
Processes," Ann. Math. Statist. 30, 1215-1228 (1959). 

u j. j. Coleman, "Reliability of Aircraft Structures in Resisting 
Chance Failure," Operations Res. 7, 639-645 (1959). 

• M. Shinozuka, "On Upper and Lower Bounds of the Prob- 
ability of Failure of Simple Structures under Random Excitation," 
Columbia Univ. Inst. Study Fatigue Reliability Tech. Rept. 01 
(Dec. 1963). 

lim [p+•_(at,t)--X?3dt=O, (3Sa) 

lim [-p++l_(a,t•,t•)-- (N?)•-ldtxdt•=O. (3Sb) 

The difficulty in verifying these expressions is due to 
the extreme complexity (as may be noted from expres- 
sions of Sec. III) of the functions p+•_(a,t), p•_•i- 
(ot, tt,t•), .... The meaning of Eqs. 35 is made clear by 
discussing the first. The integral 

fo p+l_(a,t)dt (36) 
n j. R. Rice, "Theoretical Prediction of Some Statistical 

Characteristics of Random Loadings Relevant to Fatigue and 
Fracture," Ph.D. thesis, Lehigh Univ. (1964). 
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is the conditional expected number of upward crossings 
of x=a in (0, T) given a downward crossing of x=a at 
t=O, and 

(37) 
is the unconditional expected number of upward cross- 
ings of x=a in (0, T). Equation 35a then requires that, 
as a-o o•, the difference between the conditional and 
tinconditional expected numbers of upward crossings in 
(0,•e) approaches zero. There is little difficulty in 
justifying p+l_(oqt)--,0 and A'?--•0 as a-* •c. Further, 
from Eq. 17, p+l_(%O--•N,+ as t --} m as is required for 
the integral to exist. Thus, if the integral converges 
uniformly x4 so that the limit on a may be taken inside 
the integral sign, Eq. 35a is satisfied. Uniform converg- 
ence is assured if 

f• [p.•_ (.,t) - x.*]dt (38) 
[which represents the difference between the conditional 
and unconditional expected numbers of upward cross- 
ings in (T, m)-] can be made arbitrarily small by choos- 
ing, independently of a, a correspondingly large T. 
Essentially, then, it is required that the dependence of 
pvl-(a,t) on its conditioning at t=0 dies out sufficiently 
fast in time for all a. One expects the conditioning 
influence to dominate p+l_(%t) only for times compara- 
ble to some characteristics of the process, such as 
1/2X0 +, the mean time between crossings of x=0, so 
that the time of conditioning influence is negligible in 
colnparison to times of the order of the mean recurrence 
time I/N? for large or. 

III. APPLICATION TO STATIONARY GAUSSIAN 
PROCESSES 

Formulas required for the determination of the 
first-occurrence and first-recurrence time densities are 

given in this section for the technically important case 
of stationary (;aussian processes. Expressions are given 
for A'? as required in the limiting distributions for large 
a of Eq. 29 and 30 and for p+•_(a,t) and p+l+(%t), 
defined, respectively, by Eqs. 15 and 16, as required in 
the renewal-process approximation. Numerical examples 
are given for processes with idealized spectra. 

For a (;aussian process, X? as defined by Eq. 7 is' 

X?= (1/2•r)[--R"(O)/R(O)3• exp[--}a•/R(0)-], (39) 

where R(r)= (x(l)x(l+r)).•, is the correlation function 
of the process. The fourth-order joint-density function 

g(u,v; u',v'; r) of x(0), .•(0), x(r), and k(r) is required 
in the determination of p+l-(a,r) and P+l+(%r). In the 
Gaussian case, this is '• 

g(u,v; •',v'; r)= [(2,0"x/[ MI] ' 
e •p{ - «is, •u•+s•-ø+s•u'•+s,d -ø3 

-- s•'.,uv-- s2avut-- sa4ut vt-- & •uvt-- S•aUgt-- s•r} , (40) 

where so is the element of the ith row and jth column 
of the inverse of matrix [M] and where JM[ is the 
demrminant of matrix []Q•e matrix [M] being 
defined • 

Fe(0) o e(•) •'(•) ] 

[•,]=/•(•) -- e'(o) -- R'(•) --0e"(•)/' -•'ff) R(0) 
L-•'(•) -•"(,-) o -•"(o)J 

(41) 

The considerable ainount of algebra required to express 
Eq. 40 in terms of the correlation function R(r) and its 
first two derivatives is omitted here. After making the 
change of variables x= --•(s•,/2), y=v'(s4d2) in Eq. 15 
and x=v(s•/2), y=v'(s•d2) in Eq. 16, one obtains 

p.i_ (a,r) = A e -• xye- 
dO JO 

(42) 

dO dO 

(43) 

Here, A, B, c, and D are functions of r expressible in 
terms of the correlation function R(r)=R, and its 
derivatives by 

and 

. l =.-I if) = (2/•) (-Ro/R"o) (1MI 

• = B09 = [(R"o--R"3/IMI]v-- O/2Ro), 

,-= •(•)= O/•)Uz",(•o,-•?)+.•.•',•], 
(44) 

where 

[M I= ( RoRo"-- R,R," q- R,'2) •-- ( RoRd'-- R,Ro") •, 
fi = -- Ro t' (Ro •-- R?) -- RoRr% 
?= (Ro-- R,) (Ro"-t-R,")+ R?. 

(45) 

The double integrals in Eqs. 42 and 43 cannot be 
evaluated in closed form, but, by changing to polar 

UE. B. Wilson, Adzanced Calculus (Ginn & Co., Boston, ]aJ. S. Bendat, Principles and Applications of Random 
glass., 1912). Theory (John Wiley & Sons, Inc., N'ew York, 1958). 
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coordinates, both can be reduced to single finite inte- 
grals. Performing the change of variables x=r cos0, 
y= r sin0, Eq. 42 becomes 

P+I- (a,r) = «A e-sjo ,a sin20 
X e -t20+' 81•ø)+21•r(•i•l•ø)drclO. (46) 

Carwing out the integration in r, 

œ•/• sin20 

a 0 (lq-c sin20) = 

XE¾/•rzx(•q-zt2)ez;(l q-erfzx)q- l q-z•7ldO, (47) 

where 

zx=zx(a,r,O) = Da(sinOq-cosO)/ (l q-c sin20)L (48) 

The equation for p+l+(a,r) is identical to Eq. 47, except 
that c is replaced by --c and z• is replaced by z=, where 

z?=zz(ot,r,O) = Dot(sinO--cosO)/ (1--c sin20)i. (49) 

Noting the symmetry of z• about O=•r/4 and the 
antisymmetry of zo_ about O=•r/4, the equations for 
p+t_(a,r) and p+t+(a,r) become 

œ,t4 sin20 

p+i_(a,r)=}Ae-a•2Jo (lq-½sin20) • 
X [v/•rzx (Sq-z•=)e*;( 1 q-erfz0 q- 1 q-zx"ldO, (50) 

œ-t• sin20 

p+l+(a,r) = «A•-a=•Jo (1--c sin20) • 
X[x/•rz•_(o•q-z?)e';(erfz=)q- l q-z•3-ldO. (51) 

The above integrals are expressed in a form convenient 
for numerical evaluation. 

Results of numerical calculations of the first-occur- 
rence time density po(%t) are given below for some 
stationary Gaussian processes with idealized power 
spectral densities. The spectra considered are constant 
over a certain frequency range and zero for all other 
frequencies, having the mathematical representation 

.•/(•-•)• •o• = 
OTHERWISE• 

where &oo is a lower cutoff frequency, coo is an upper 
cutoff frequency, and a ø- is the variance of x(t). The 

correlation function for the process x(t) is • 

=/i S (o,)com•&,, 
R(r) = [,=/ (1--fi)oo•r•bincoor--sin•co•r-l. (53) 

In peffornfing numerical calculations, it is convenient 
to suppress explicit dependence of the results on the 
variance a •and cutoff frequency co•. To this end, the 
dimensionless times v=co•t and •I'=oJ•r are introduced, 
and the normalized dimensionless process y(v)=x(t)/a 
is considered. The correlation function Ru(,I,) of the 
process y(v) is 

Ru(g,) = (y(v)y(vq-,l,) >•,= (1/a •) (x(t)x(tq-,t,/c%) )a, 
= (Uo') (5 4) 

Substituting from Eq. 53 for R(r), 

Ru 0I') = [ (1 --/•) 'I']-'EsiwI' -- sin/•I, -1. (55) 

Calculations are made of the firsboccurrence time 

density Po (a/,,,lv), where po (a/a,'l')d'I, is the probability, 
given y(O)<ot/a, that the normalized process y(v) first 
crosses the level y=ot/a in the dimensionless time 
interval 0I', 'P+d'['). Clearly, this is also the probability, 
given x(0) <a, that x(t) first crosses the level x=a when 
wd is in the interval 0I', •q-d•). 

Equation 29 gives an approximation to the first- 
occurrence density for the statistically rare crossings of 
high levels in terms of the expected number of upward 
crossings of the level per unit time. Using Eq. 39, the 
expected number of upward crossin• of y =a/a per unit 
dimensionless time (that i% the expected number of 
upward crossings of x=a per unit of cod) becomes 

1 

x.,o + =--E-RJ' (o)/-•, (o) 3• eq, E- « (•/4VR• (o)3 
2•r 

1 

=--[ (1 --•)/3 (1 --•)-]i exp[-- «a2/a2-1, (56) 
2•r 

since Ru(0)= 1 and RJ'(0)= -- (1--fia)/3(1--•). Thus, 
Eq. 29 for the first-occurrence ti•ne density for large 
a--namely, Po (a/a,'I')'•ø-V•,,'? exp (-- N•/?xI0--becomes 

1 

po(a/v,'I')•'ø--[(1--tSa)/3(1--•)-l• exp(--«oF/a •) 
2•r 

exp{--•j-(1--tga)/3(1--i•)]•exp(---}oF/a•)'•}. (57) 
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Numerical results were obtained from the renewal- 

process approximation for values of ot eqnal to % 2% and 
3v for each of two random processes--one process 
having an ideal wide-band spectrum with •=0 and the 
other process having an ideal narrow-band spectrum 
with •=•. The calculation is started by finding the 
functions p+l_(Ot/v,•) and p+l+(ot/v,',I,) tiefined for 
Gaussian processes by Eqs. 50 and 51, for 'I'=wd=O, 
0.25, 0.50, 0.75, -- -, 50.00. The value •I, = 50 is approxi- 
mately ten times the average distance between zero 
crossings. The integrations from 0 to •r/4 on 0 required 
in Eqs. 50 and 51 were carried out by computing the 
integrand for 0=0, •r/64, 7r/32, --., •r/4 and summing. 
Once p+:_(ot/%',I,) and p+l+(ot/v,',I,) are determined, the 
first-recnrrence time density pr(Ot/V,xI') is found from 
the renewal integral Eq. 13, which was obtained by 
making the renewal-process approximation in the exact 
inclusion-exclusion expression for the recurrence den- 
sit3'. In terms of the present dimensionless notation, 
Eq. 13 becomes 

q- fo Pr(a/v'v)P+t+(a/v' ',I,--•,)d•,. (58) 
The Equation was solved for 'I'=0, 0.25, 0.50, .--, 
125.00 by replacing the integrM by a summation. 
Clearly, the solution for p•(a/v,g') depends only on the 
known functions P+I- and P+I+ and the past values of 
p•; thus, the solution of Eq. 58 is readily obtained 
recursively. The limiting value ;V•t? was used for 
P+I- and P+I+ when a2 was greater than 50. The mean 
recurrence time is obtained from Eq. 21, an expression 
that, although derived through the renewal-process 
approximation, yields the exact value of the mean 
recurrence time, as shown in Appendix A. [n terms of 
the present notation• the mean dimensionless recurrence 
time (•)• is 

[-P+l-(a/% •!')-P+l+ (ot/% xI') ]dxI' } . 
(59) 

The integration was carried out numerically by 
replacing the infinite integral by a summation in ,I, from 
0 to 50, at intervals of 0.25. Finally, Eq. 5 yields the 
following expression for the first-occurrence time density 
in terms of the first-recurrence time density: 

Again, the integration was replaced by a summation 

giving the first occurrence density for •I'=cod=0, 0.25, 
0.S0, ß ß ß, 125.00. 

Results of the computations are shown by the solid 
lines in Fig. 2(a-c) for the wide-band spectrum (•=0) 
with oe=v, 2% and 3v, respectively. The dashed lines 
are plots of the limiting exponential distribution for the 
first-occurrence density as given by Eq. 57. It is seen 
that, as ot increases, the agreement between the renewal- 
process approximation (solid lines) and the exponential 
distribution (dashed lines) becomes increasingly good. 
When a= 2v, the difference between the two curves as 
shown in Fig. 2(b) is less than 7% for small values of 
xI, = cod, and, for larger values of xI,, the difference becomes 
negligible. When a = 3v as shown in Fig. 2 (c), the differ- 
ence is completely negligible, having a value of less 
than «%. 

The results verify the validity of the exponential 
distribution for large ot in the case of processes with wide 
spectra, and show a very rapid approach to the li•niting 
distribution as a is increased. A sinfilar verification is 

obtained in the case of processes with narrow spectra, 
but here the approach to the limiting distribution is 
considerably slower. 

Figure 3(a-c) contain results of the computations for 
the narrow-band spectrum (fl= }) witha=% 2% and 3% 
respectively. When or= 2v, the difference between the 
renewal-process approximation and the exponential 
distribution, as shown in Fig., 3(b) has a maximuin of 
about 11% for small values of ,P and the difference 
persists, in contrast to the wide-band case, for larger 
values of ,I•. When c•=3v, as shown in Fig. 3(c), the 
dilterence decreases to a value of about 5%, which 
persists over the entire portion of the time axis shown. 
It is clear that, ultimately, the two curves of Fig. 3(c) 
meet, since it can be shown that the area under each is 
equal to unity. 

The results indicate a considerable difference between 

processes with wide- and narrow-band spectra, with 
regard to the rapidity of approach to the exponential 
first-occurrence time distribution, and indicate that, in 
sitt:ations requiring great accuracy, some caution is 
necessary in applying the exponential distribution to 
narrow-band processes when the crossings of the level 
under consideration are not statistically rare. 

Unfortunately, the renewal-process approximation 
seems least appropriate in the case of narrow-band 
proctsses, for these have correlation functions that 
approach zero rather slowly with time, indicating a high 
degree of dependence on past values. B•ic to the re- 
newal approximation is the assumption that the prob- 
ability of an upward ot crossing, given several past 
upward crossings, depends approximately only on the 
last prior crossing. Clearly, such an approximation is 
best for processes with little memory. In fact, for all 
three cases of narrow-band processes considered here. 
the renewal approximation yielded some negative 
values of the recurrence time density pr(a/%xI'). This, 
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F•c,. 3. First-occurrence density. Narrow spectrum. (a) 
po (,.•,T 

.O8 

04 
(a) 

.001G 

0008 

(c) 

25 5O 75 tO0 

the journal of the Acoustical Society of America 333 



RICE AND BEER 

may be inferred by noting the existence of relative 
minima in the graphs of po(a/'a,a. ') in Fig. 3(a-c). From 
Eq. 60, the derivative with respect to q• of po(a/o','•) 
is proportional to -- pr(a/a,'P), indicating that Po (oz/a,,l,) 
should have no minima. The fact that the calculated 

values of pr(o•/a,'•') took sinall negative values over 
some short time intervals is reflected in the Figures by 
the small positive slope of the curves at certain intervals 
on the time axes. A similar behavior was noted 4 in 

connection with the application of a renewal-process 
approximation to the zero-crossing problem. 
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Appendix A 

It was indicated that the expression obtained for the 
first-recurrence-time probability density p•(ot, r) by the 
renewal-process approximation not only satisfies the 
condition 

øpr(ot,r)dr= 1, (A1) 
but also yields the correct value of the mean recurrence 
time (r)•,. This last point is now proved as follows. 

Let (r')a, be the average time between successive 
upward and downward crossings of x=a (Fig. A-I). 
Then, (r)•,,q-(r')•,,=l/X• +. Solving for (r)•, yields 

It is shown that this expression is identical with the 
expression Eq. 21 obtained by the renewal-process 
approximation. 

Let X(r') be the probability density for the time r', 
shown in Fig. A-I, between successive upward and 
downward crossings of x=% and let p+l_(o,,rl r') be the 
probability of an upward crossing of x=a in (l, tq-dl) 
given, as in Fig. A-l, a downward crossing at t=O, and 
that the last upward crossing prior to t=0 occurred at 
t=- •'. Then, by the law of conditional probability 

Consider 

fo r p+l+ (a,t)dt, 
which is the expected number of upward crossings of 
x=a in (O,T), given an upward crossing at/=0. Refer- 
ring to Fig. A-2, let r' be the time of the first downward 
crossing after the upward crossing at t = 0. If r' is given 
and r'< T, the expected number of upward crossings 
in (O,T) is 

• p+i_(o•, t-r'lr')dt. 

•x(t) 

FIG,. A-I. Random process with downwaxd crossing of x=a 
at t=0 and last prior upward crossing at 

If r'> T, then the expected number of upward crossings 
in (0, T) is zero. Thus, the difference between the condi- 

(A2) tional expected number of upward crossings of x=a in 
(0, T), given a downward crossing at t=0, and the 
conditional expected number of upward crossings of 
x=a in (0, T), given an npward crossing at/=0, is 

ff P+,+ 
= ff p+,_(.,0a,-ff x(.')ff 

(A3) 

(A4) 
=• [p+,_(•,0-• • 

(AS) +f Xff')/ p+•_(=,tlr')dtd•'. (A6) 
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The first of the three integrals in the last member of 
Eq. A6 is identically zero by Eq. A3. The second inte- 
gral is now shown to approach zero as T approaches 
infinity. We asstime that, regardless of the value of r' 
shown in Fig. A-l, the average number of upwanl 
crossings of x=a per unit in any interval (0, T) following 
the upward crossing at t=--r' and the downward 
crossing at t=0 shown in Fig. A-1 is bounded by some 
number M. Thus, 

• p•.l_(o•,tlr')dt<M •o• •Ln r', (A7) 

a mathematical statement of the plmtsible assumption 
that an arbitrarily large r' does not induce an infinite 
number of crossings of x=a in any finite time interval. 
Then, 

ff ]; 
= x½' 

f/ < (^8) 

The last terln of Eq. A8 clearly approaches zero as T 
approaches infinity, since (r')•, exists, and thus the 
second integral in the last member Eq. A6 approaches 
zero. Thus, in computing the limit of Eq. A6, one needs 
only to find the limit of the third integral in Eq. A6. 

Fro. A-2. Random process with upward crossing of x=ot at 
t=0 and first later downward crossing at 

Therefore, 

f ; [p+,_(ot,t)--p+•. (a,t) ]dt 
= lira [p+l_(a,t)--p+l+(a,t)]dt 

since 

T T 

=f0 X(Tt) lilll ; p+_(0t• yt)dtdT ' 
=f; x(,')x?,'a,'= (A9) 

lira p+l-(a,t[ r') = .V• +. (AlO) 

Thus, Eqs. 21 and A2 are identical, proving that the 
renewal-process approximation yields the exact value 
of the mean recurrence time. 
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