
Reprinted from: J. R. Rice, "An Examination of the Fracture Mechanics Energy Balance from the Point of 
View of Continuum Mechanics", in Proceedings of the 1st International Conference on 
Fracture, Sendai, 1965 (eds. T. Yokobori, T. Kawasaki, and J. l. Swedlow), Vol. 1, Japanese 
Society for Strength and Fracture of Materials, Tokyo, 1966, pp. 309-340. 

A-18 AN EX.ANINATION OF THE FRACTURE HECHA.t'HCS ENERGY BALA.~CE 

FROM THE POINT OF VIEW OF COf.r'riN1JUN MECHA.~ICS 

James R. Rice* 

ABSTRACT 

The Griffith energy balance for fracture vith 'extensions to in
elastic materials considers a cracked body as a linear elastic conti
nuum in which the potential energy released by a crack extension 
should balance the surface energy plus the energy ~issipated by in
elastic deformation at the fracture load. With progress in continuum 
mechanics analyses of crack tip stress fields for material models 
other than purely linear elastic behavior (non-linear elastic, elastic 
-plastic, visco-elastic, visco- plastic, etc.) the possibility ari
ses that deviations from linear elastic'behavior may form a predictable 
part of the mechanics rather than an effect treatable only by inclusion 
of a modified surface energy term. This paper presents an examination 
~nd discussion of the fracture mechanics energy balance from this more 
general viewpoint, attempting to seek those conclusions which follow 
from theorems and methods of continuum mechanics and broad classifica
tions of continua, rather than from specific and lo.rgely unavailable 
inelastic deformation analyses. : · · 

A Griffith type fracture criterion is employed in that it is assumed 
for crack extension that the work of applied forces must equal the sum 
of the strain energy change, kinetic energy change, energy dissipated 
by inelastic deformation, and surface energy. All energy variations 
except the surface energy are assumed estimated from a continuum so
lution for an advancing crack satisfying.the equations of continuum 
mechanics and constitutive relations appropriate to the material, while 
the surface energy is assumed independently kno~~ from microstructural 
considerations. Under this Griffith type assumption it is shown, ir
respective of the particular constitutive relation employed, that the 
fract.ure criterion is determined solely by local stresses and defora:a
tions near the crack tip (or mathematically, by crack tip singularities 
in continuum solutions), and that an overall Griffith energy balance is 
equivalent to s~tting the work done in stress removal from the new crack 
surface as estimated by the continuum analysis equal to the independent 
vork estimate for bond breakage in the form of surface energy. While 
nll conclusions of the paper tacitly assume the validity of a Griffith 
type fra...:ture criterion, the inadequacy of such a criterion !or preva
le~t highly ductile fracture mechanisms such as void coalescence by 
intense plastic flow (rather than fracture by direct bond separation) 
is emphasized. 

*Assistant Professor of Engineering, Bro"~ t:niversity, Pro,·idence, R.I., 
u.s.A. 
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Some general results for crack extension in stable linear or non
linear elastic materials are given, and recent proposals pertaining to 
the influence on the fracture criterion of uniform non-singular stress 
states, arising in biaxial tension, are sho~~ inapp~opriate. The influ
ences of surface energy and hardening behavior in determining fracture 
conditions in elastic-plastic materials are discussed, and important 
differences of interpretation arise with existing proposals of energy 
criteria for brittle-like fracture in ductile materials. In particular, 
a consequence of the Griffith type assumption discussed above is that 
the surface energy term is of major importance in determining fracture 
strength, even though its magnitude is commonly negligible in comparison 
to the plastic dissipation. This is because the difference between 
potential energy released and plastic energy dissipated in a (hypothe
tical) crack advance is a function of the applied load level, equal to 
the surface energy at fracture. The necessity of including hardening 
behavior in a material description is emphasized for situations in 
which the Griffith criterion is physically appropriate, for it is proven 
that with the perfectly plastic idealization this criterion is never 
satisfied in the sense that the energy surplus required for surface 
energy cannot be attained. Equivalently, fracture according to the 
Griffith type assumption can never occur in perfectly plastic materials. 
The roles of surface energy and hardening behavior in fracture of 
elastic - plastic materials are further clarified by the analysis of a 
highly simplified model for crack extension and by dimensional consider-
ations. At low stress levels inducing plastic behavior on a small • 
scale compared to cracked body dimensions, the Griffith assumption 
leads to a potential energy release at fracture proportional to the 
surface energy, the coefficient of proportionality depending on 
plastic stress strain relations and generally increasing with decrea
sing hardening behavior. While such conclusions are consistent with 
known environmental influences, it is cautioned that they apply only 
when the Griffith bond breakage mechanism adequately reflects the 
actual separation process in ductile materials. 

INTRODUCTION 

The explanation of fracture in terms of an energy balance for 
the extension of pre-existing cracks began with the classic work of 
Griffith1, who obtained a criterion of brittle fracture by equating 
the decrease in potential energy of a linearly elastic body, due to 
crack extension, to the energy of the newly created surface. The 
Griffith theory gave a reasonably good agreement with experimental 
results for materials such as glass and, when combined with a statis
tical flaw theory, successfully explained the great increase in rup
ture strength of glass whiskers. Fracture in the technologically 
important materials is usually accompanied by irreversible plastic and/ 
or viscous deformation near a crack tip, and one is naturally led to 
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consideration of a modified Griffith-type theory vhich accounts for 
this behavior. Such modifications for the case of ductile metals 
were considered by Irwin2 and Orowan3 who equated the decrease in 
elastic potential energy, due to crack extension, to the sum of the 
energy of the new surface and the work of plastic dissipation. This 
resulted in fracture criteria identical to those of the Griffith 
theory, except that now the sum of surface energy and plastic dissi
pation terms replaced the surface energy term of the Griffith theory. 
Irwin4 further elaborated his modification of the Griffith theory by 
showing that the decrease in potential energy as calculated from the 
elastic solutions for cracked bodies (or in his terminology, the 
energy release rate) could always be expressed in terms of the elastic 
stress intensity factor, vhich is the coefficient of a characteristic 
singular term, depending on the inverse square root of distance £rom 
the crack tip, in the elastic stress solutions. 

The purpose of the following work is to re-examine the energy 
balance and subsequent failure criteria of fracture mechanics. A 
general formulation of the Griffith criteria in a form valid for 
any continuum is presented, and an examination given of resulting 
fracture criteria for elastic and ductile materials, vith particular 
attention to the role of surface energy and work hardening behavior 
in determining conditions of failure for the latter. 

ENERGY BALANCE FOR CRACK EXTENSION 

A general energy balance for fracture, modeled on the Griffith 
theory, is presented here in a form valid for any continuous body 
sustaining a crack. No particular assumptions as to the form of 
constitutive equations relating stresses and strains are made in 
deriving the general results of this and the next section. Hovever, 
resulting expressions are derived under the usual assumptions of in
finitesimal deformations· so that geometrical non-linearities are 
ignored. . 

Consider a cracked continuum, as shovn in figure 1, loaded by 
forces per unit surface area 1 on the portion of bounding surface AT, 
forces per unit volume ! throughout the region V occupied by the body, 
and imposed displacements ~ on the portion of bounding surface Au· 
Let S[. and £ denote respectively the tensors of stresses and corres
ponding strains. Referring all quantities to a set of rectangular 
cartesian coordinates (xl, x2, x3) and using the subscript notation 
with repeated indices implying a summation over the values 1,2, and 
3, the following equations are assumed satisfied: 

1) equaUons of motion 'a()ij + Fi = f'iii throughout V, where the dots 
Q Xj 

denote time derivatives and f is the mass density, 2) traction boundary 
conditions O'ijflj = Ti on AT, where '!l is the unit normal vector dra\o-n 
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outward from the region under consideration, 3) strain-displ.acement relations 

-cu· ()U· 
Eij =! (---1 + ~), and 4) displacement boundary conditions that ui 

CXj OXi ' I 

take on prescribed values on Au· To these must be added a constitu
tive relation for complete specification of a solution. 

Suppose that the crack extends, under constant surface tractions 
on AT and surface displacements on Au, from an initial state (a) of 
figure l(a), at ¥hich fracture is imminent, to a state (b) of figure 
l(b) so that the traction free crack surface increases by an amount 
A'. The crack is not necessarily assumed stationary in state (a) and 
may be propagating with some non-zero velocity with state (a) then 
being the configuration of the system at some arbitrary fixed instant. 
Letting superscripts a or b on any mechanical quantity denote its 
value in the initial or extended states, respectively, the work of 
the applied forces in the crack extension is 

fAT Ti(u~- u~) dA + fv Fi(u~- u~)dV. The sum of the change in 

stored elastic energy 

( {J(b) c:). .. df .. ~ dV, 
Jv (a) l.J l.J J 

and the energy dissipated in the material is 

where J(b) denotes the integral taken o.ver 
(a) 

the transition from (a) to (b) or 
. J(b) tb 

inore precisely fdg = J fgdt, 
(a} ta 

d th h . k' t' . .t 1 f( .b.b .a.a)dV an e c ange l.n J.ne J.c energy J.s ~ u.u. - u.u. • 
v 1 1 l. 1 

For 

fracture, the vork of applied forces during crack extension is 
equated to the change in stored energy, dissipated energy, change in 
kinetic energy, and energy of the nevly created surface. It is 
assumed that all energy terms, except the surface energy, are adequate
ly estimated by the above expressions as evaluated through a conti
nuum mechanics solution for an extending crack. The energy of the 
nevly created surface is denoted byPA', vhere r is the surface 
energy. Physical interpretations of r, in terms of the vork per 
unit area required to separate surfaces, are discussed in the next 
section. Ignoring thermal-mechanical coupling (or limiting the dis
cussion to isothermal or adiabatic conditions vith appropriate con
stitutive equations), the energy balance required in the fracture 
process becomes 

JA T.(u~- u~)dA +j Fi(u~- uV~v 
T 1 1 J. V 
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J } f(b) ""'·.at: .. }av + tJ f<u.~u.~- u.~u.~)dv +rA· . (l) = V l ) (a) u lJ lJ V 1 1 1 1 

The meaning of this energy balance is made clear by transforming 
the terms of (1) in accord with the four above conditions satisfied 
by the stress and displacement fields. Since Ti = cr1~n. on AT, u? 

J J l 

= u~ on A , and ct.~n. = 0 on the newly created traction free crack 
1 --u 1J J 

surface A' , 

JL T. (u~ - u~)dA = 
_T 1 1 J. 

· b b a 1 -'· ·""· (u. - u.)dA v lJ"J 1 1 

AT+~+A' 

(2} 

Applying Green's theorem to transform the above integral on the 
bounding surface ~+~+A' into an integral on V, and making use of 

equations of motion and strain-displacement relations, 

JL T.{u~- u~)dA = J "~J. [~~(u~- u~}] dV 
-~ 1 1 1 v u 1J 1 J. 

= J [d.~(€.~- E.~) +fU~(u~- u~) - F.(u~- ua1.)] dV v 1J 1J 1J J. J. 1 1 1 

=J {·({b) [o'.~d€-.. + fii?du·.) } dV-f F. (u~ ~ ua1 )dV {3) 
v ){a) 1J 1J 1 1 V 1 1 

It will also be convenient to write 
• (b) 

j 5 f (u?u~ - u~u~)dV = J { f f ii.du.} dV 
V 1 1 1 1 V (a) 1 1 

(4) 

Substituting (3) and (4) into the energy balance ~or crack extension 
ot (1}, the fracture criterion becomes 

J f f(b) [(if.~- rf. .)df .. + f (U~- U.)du1 J} dV =rA• • (5) 
v (a.) ~J 1J lJ 1 l. 

Evaluation of the integral appearing in (5) for a particular 
material, loading, and geometrical configuration requires a knowledge 
of appropriate constitutive relations as well as the solution for 
the stress and deformation fields in the presence of a growing crack. 
A specific fracture criterion is obtained by dividing (5) by A' and 
letting this crack extension approach zero. Ignoring dynamic terms 
(that is, settingf =0) one obtains a condition for the load required 
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to produce static fracture analagous to that obtained by G;iffithl 
for a linear elastic material. Vith dynamic terms included, equation 
(5) may be revie•;ed as a condition relating applied loadings to the 
velocity of fracture as in the work of Craggs5 and Gilman6 on elastic 
materials. Other as yet unexplored possibilities exist, particularly 
for rate sensitive materials such as viscoelastic solids, where, with 
or without d)~amic terms, equation (5) should serve to relate crack 
velocity and applied loadings. 

Some important conclusions may, however, be deduced directly from 
(5) without recourse to particular constitutive equations. These deal 
with the actual local nature of the failure criterion based on the over
all energy balance presented here. 

Let Y0 be any finite volume which completely surrounds the crack 
tip region of state (a) and which is chosen so that the newly created 
crack surface, A', of state (b) is inside Y0 , the bounding surface of 
V0 being labeled A0 • When A1 is infinitesimal as in the limiting 
process required to derive a specific fracture criterion from (5), it 
is clear that Y0 may be chosen arbitrarily small and still satisfy the 
re_quired conditions. Equation (5) may be written as 

Jv fJ(b)r(d'~. -cJ .. )dt-.. +f(u?- u.)du.J}dY 
0 (a) l l.J l.J l.J 1 . 1 1 

+j, {J(b)[<O".~-<J:.)dE .. +f<u? u1.)du1.).ldY=rA'. (6) 
V-V o (a). l.J lJ .l.J .1 

_Through use of equations of motion, strain displacement relationships, 
and Green's theorem, the volume integral over v~v0 may be written as 

where Ti =Oijnj and~ is the unit normal dra~n away from the region 
Y-V0 • By boundary conditions the integral over AT and Au vanishes 
so that (6) becomes, after dividing by A' , 

-A1 , J !J(b) [<cr.~ -lT .. )dE .. + f(u?- u.)du.J }dv 
Vo (a) lJ lJ lJ 1 1 1 

1 J lf{b) b } +~A' (T. - T.)du. dA = r 
Ao (a) l. 1 l. 

(7) 

Nov consider A' to represent an infinitesimal crack extension 
and assume the stress and deformation fields to be non-singular and 
continuous ever.).,·here in V except possibly (and probably) at the· crack 
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tip, and to change continuously with crack size in the transition from 
(a) to (b). These conditions may reasonably be expected to be .fulfilled 
when crack extension is adequately modeled as continuous in the conti
nuum sense so that sharp wave fronts with accompanying stress disconti
nuities are not encountered. Since points on A0 are at finite distances 

from the crack tip, the quantity T~- T. = (0".~-Q:"'.)n. is infinitesimal 
l l lJ lJ J 

of order A', and since this is integrated over the also infinitesimal 

(u~-u~} in (7), the integral over A0 is of second order in A' and 
l l 

disappears as A'~ o. Thus the fracture criterion becomes 

lim 
A'..,.o -A, (Cf .. - 6: .)dE .. + f(u. - U.)du. dV =r, 1 f t·f (b) [ b .. b . J} 

V 0 (a) 1 J lJ l.J 1 1 1 
(8) 

where V0 is now any arbitrarily small finite region surrounding the 
crack tip. Any terms in the integrant of (8) which are non-singular 
at the crack tip make no contribution since V0 may be taken as small 
as desired and thus, within the framework of continuum mechanics and 
assuming the validity of a Griffith type theory, the criterion of 

· fracture is determined solely by singularities in the continuum stress 
and deformation field at the crack tip. 

Physically, this means that the Griffith criterion of fracture, 
though derived from an overall energy balance, is determined by the 
local stresses and deformations in ihe immediate vicinity of the crack 
tip. For conditions of static fracture (dynamic terms omitted from 
(8)) this result su~gests the validity, under a wide range of conditions, 
of Irvin's proposal that fracture occurs when the crack tip stress 
intensity factor, as calculated from linear elasticity, attains a critical 
value. Consider a cracked body which behaves in a predomin~ntly linear 
elastic fashion except for small regions near the crack tip where response 
such as plastic, viscous, or other non-linear behavior is activated by 
high stress levels. If the crack size and other geometric dimensions 
are sufficiently large so that at fracture dimensions of the non-elastic 
zone are small in comparison, one may expect that the linear elastic 
field is little disturbed and that the stress and deformation field in 
the non-elastic zone is controlled by the stress intensity factor, which 
determines the strength of the singularity in the linear elastic solution. 
This has been analytically verified for elastic-perfectly plastic 
materials7,8,9,10, although under plane strain conditions the presence 
of a uniform stress field acting parallel to the crack line may effect 
some minor modifications. When these conditions of small scale non
elastic behavior are met the elastic stress intensity factor controls 
the local stress and deformation, and since the fracture criterion (8) 
depends only on local condi tio.ns, one expects fracture to occur vben 
the stress intensity fadtor attains a critical value characteristic of 
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the material under consideration, temperature of test, plate thickness 
in the case of thin sheets, and rate of load application when viscous 
behavior is activated. I£ the Griffith-type criterion presented here 
is physically appropriate, the value of the stress intensity factor at 
fracture for small scale non-elastic behavior and the fracture criterion 
for cases of large scale non-elastic behavior is predictable if the 
complete continuum solution for an extending crack is known. In the 
absence of such solutions, the stress intensity factor provides a means 
for correlating data. For ductile materials one may go a step further 
and base fracture criteria on parameters describin~ local deformations 
in elastic-perfectly plastic solutions as in ll,9, o, when such are 
available. 

PHYSICAL INTERPRETATION OF SURFACE EJ.'J'ERGY 

The role of surface energy r in determining conditions of fracture 
from the local stress and deformation field, and also conditions under 
which a Griffith formulation is appropriate, are clarified by trans
~orming (5) to an alternate form involving the work of surface tractions. 
Using equations of motion, strain-displacement relations, and Green's 
theorem to effect the transformation of (5) from a volume integral to 
an integral over the bounding surface AT+ Au+ A' of V in state (b), 

( T~ - T. )du . J dA = r A I ' 
l l 1 . 

{9) 

where Ti =Clijnj and~ is the unit normal drawn outward from the region 
V. Since Ti is constant on AT, ui is constant on Au, and T~ = o on 
A•, the new crack surface being traction free in state (b}, this becomes 

-J {J(b) T1dui jdA =r A' 
A' (a) . 

Or, in limit form, to obtain a specific fracture criterion, 

lim 1 
A1-)0 A' 

(10) 

(11) 

These equations are, in general, purely formal as the value of the 
surface traction! on the new surface A' changes discontinuously from 
a possibLy infinite value to zero as the crack advances. As dis
cussed in the next section, the integral may be given a definite 
meaning for elastic materials. Hovever, prese~t and later purposes 
are served by the clear symbolic meaning of (10) and (11). 
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The quantity J fJ(b) T.du.} dA represents the work done by 
A' l (a) l l 

surface tractions on A' as the nev crack surface is created, and is, 
under conditions appropriate for fracture, negative since the surfaces 
are pulled apart under opposing stresses. The left side of (10) is 
therefore the work done by the nev crack surfaces against forces tending 
to bold them together. It is reasonablet then, to define the surface 
energy term, r, in such a way thatf/A' is the same work, but as calcu
lated by microstructural considerations of the separation of material 
surfaces. Depending on the mechanism of fracture, rso defined may 
or may not be identical to the surface energy as commonly defined and 
used by Griffithl for fracture in brittle materials such as glass. 
On the other hand, for fracture in ductile materials f1 vill not be 
equal to the plastic dissipation term of the Irvin-Orowan2,3 modifi
cation, for this term includes also vork due to plastic flow at ~ateri
al points away from the crack surfacet where the work is here assumed 
estimated by a continuum description with appropriate constitutive 
relations. 

The two estimates of surface work appearing in (10} are indepen
dent, and the Griffith criterion predicts fracture when applied loads 
are sufficiently great to make the continuum estimate agree with the 
microstructural estimate. Ordinarily, an energy balance is not an 
extra condition which may be imposed on a mechanical system, but 
rather a direct consequence of the mechanics involved. The need 
for an energy balance (or some other criterion based, for example, on· 
an average stress or strain near the crack tip) arises because of the 
separate mechanical formulations employed, and would not be required 

· if the eonver.ient formulation via continuum mechanics could be adequate
ly replaced by microstructural considerations on an atomic or larger 
scale depending on the fracture mechanisms involved. 

Vhen the fracture mechanism is the brittle type of normal separa
tion of atomic planes through overcoming cohesive forces, r is appro
priately taken as the true surface energy as estimated from atomic 
force attraction laws as in6 or by direct measurement as in 12, For 
this choice of r' comparisqns may be made with other fracture criteria 
contemplating similar mechanisms. The approach of Orowan3 considers 
a crack as a narrow ellipse with a tip radius of curvature of atomic 
dimensions, with fracture occuring when the concentrated stress equals 
the theoretical strength. Barenblattl3 assumes fracture to occur vhen 
stresses in a small region near the crack tip become too great to 
balance a given pattern of cohesive forces acting on the crack surface, 
without causing unbounded stresses at the crack tip. The Griffith 
criterion, being like those of Orovan and Barenblatt a local criterion, 
is based on a combination of stresses and deformations near the crack 
tip in the form of energy and is perhaps more appealing on physical 
grounds in viev of the separate continuum and microstructural approaches 
employed by all. In the case of linear elastic materials ahere a 
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complete analysis may be carried out it is not surprising that with 
appropriate values chosen for the physical parameters involved, the 
criteria of Griffith, Orowan, and Barenblatt lead to essentially 
equivalent results. 

For the common structural metals, the fracture mechanisms in
volved no longer necessarily suggest a choice of the surface energy 
term, r ' as the usual surface energy associated with cohesive forces. 
On one extreme, for situations where a high degree of ductile yielding 
may occur without serious inhibition by work hardening or stress 
triaxiallity (as for example in the final stages of necking and separa
tion in a tensile testl4 or thin-foil crack extension test2 of low 
hardening metals), observations suggest that crack extension is a 
result of large plastic flow causing a large void (the crack) to coale
sce with smaller voids nearby, the latter being either pre-existing 
or created by the deformation around inhomogenities. Here the frac
ture propagation is apparently not due to the presence of high stresses 
enabling the overc~ming of cohesive forces, but rather appears to be 
a purely kinematical consequence of large deformations enabling an 
apparent crack extension by the flowing together of voids. One may 
define a surface energy term r by considering the work required to 
coalesce a row of voids with the proper mean spacing, and proceede to 
obtain a fracture criterion through the energy balance. 

However, there are some serious objections to the appropriateness 
of a Griffith type formulation under such circumstances of highly 
ductile fracture. First the length scale for the fracture.process 
is on the order of the mean void spacing rather than atomic spacings, 
and a large degree of coupling between the mechanism of crack exten
sion and deformations at points near the crack tip is anticipated. 
The Griffith formulation as presented here assumes that such interac
tion can be neglected, as the independent energy estimates of continuum 
and microstructural mechanics are employed. This coupling would 
probably leave estimates of elastic energy changes relatively unaffected, 
but continuum estimates of the plastic work at points near the crack 
would be questionable. Another objection arises because the fracture 
mechanism involved is based on the strain required to coalesce voids 
rather than on the occurrence of high stresses. The energy balance 
criterion of failure seems, however, to be closely allied to a maximum 
stress fracture mechanism in the case of elastic-plastic materials. 
This is suggested by the agreement mentioned above between energy and 
maximum stress criteria for linear elastic solids, although the pro
portionality between stress and strain does not make this line of 
argument especially appealing. A stronger case for the equivalence 
of maximum stress and energy criteria is provided by results of sub
sequent sections on application of the energy balance to elastic-
plastic solids. The general result is that the more strain near the 
crack tip is limited by hardening or stress triaxiallity, the lo~er 
the fracture strength. This is precisely the opposite of the result 
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anticipated in cases where crack extension occurs by the kinematics of 
void coalescence. A more suitable theoretical framework for treat~ent 
of highly ductile fractures is suggested by the work of ~cClintockl5. 

The ductile fractures described above are frequently characterized 
by overall plastic deformation in a structure and, in terms of applied 
loads, are of the "high stress" type (although the expression is some
what misleading as a "high stress" fracture in the presence of a small 
crack could be a low stress fracture with a longer crack). More 
serious from the point of view of their unexpectedness are the "lo"' 
stress" type of brittle fractures which may be induced in the usually 
ductile structural metals ·by crack like fla ... ·s under conditions ,..·hen 
plastic flow is inhibited by a low temperature, an alloy constitution, 
or a mechanical treatment causing increased work hardening and a 
raised yield point, or by geometrical constraint causing stress 
triaxiallity, or when chemical alterations serve to reduce the forces 
required to separate surfaces. The Griffith energy balance here 
presented, when combined with an adequate continuum treatment of the 
elastic-plastic solid, appears more suitable for this brittle type of 
.fracture in ordinarily ductile materials, as the objections raised 
above to application for highly ductile Tracture are no longer appro
priate. The fact that materials are embrittled by the factors men
tioned suggests that the occurrence of large stresses near the crack 
tip controls failure, and this is, as will be shown, in accord vi th an 
energy approach. Further, although on a microstructural level the 
fracture propagation remains discontinuous, interaction between the 
mechanism of crack extension and deformation at points near the crack 

. is expected to be less pronounced as compared to the highly ductile 
case, and thus the continuum model of a continuously extending crack 
more appropriate for energy estimates near the crack where plastic 
flow occurs. 

As indicated above, the surface energy term pappearing in the 
energy balance is appropriately chosen as the work per unit area 
required to create new surface. Although presumed estimated from 
microstructural considerations, r may not be chosen independently of 
the continuum model employed and reflects to some degree the inade
quacies of a continuum treatment. As an extreme case, in the Irwin
Orovan2,3 modifications the continuum treatment employs only linear 
elasticity, and due to the inadequacies of such a model, the surface 
energy term must include, among other things, the total plastic work 
done on all the material near the crack tip undergoing plastic deforma
tion. This type of inadequacy does not enter present considerations 
of brittle fracture in elastic-plastic materials, as it is assumed that 
plastic deformations near the crack are adequately accounted for by 
the continuum treatment so that contributions to p come entirely from 
microstructural features not represented in the continuum model of an 
extending crack. The aim, then, of the present formulation, as 
amplified in subsequent sections, is to separate the influence's of 
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macroscopicly observable stress-strain behavior and microscopic 
features of material separation. For the relatively rare cases of 
pure cleavage in metals, the mode of failure is normal separation by 
overcoming cohesive forces and the surface energy term, {' , of the 
present formulation is correctly interpreted as the usual surface 
energy associated with a free surface. 

More generally, such a direct interpretation of ris not indi-
cated. Due to the mis-orientations of crystal planes from grain 
to grain, misorientations of grain boundaries (if they provide an 
easier fracture path), inclusions, and the like, the surface energy 
term, r ' must include·not only the usual surface energy due to the 
ultimate de-cohesion, but also the energy dissipated in inhomo
geneous plastic sliding occuring prior to separation along non
favorably oriented portions of the fracture surface. However, 
since the same cohesive forces oppose sliding as oppose normal 
separation, r is expected to be of the same order of magnitude as 
the usual surface energy, and any chemical or structural alteration 
which affects the usual surface energy is expected to similarly 
affect the surface energy term, r , appropriate for brittle-like 
fractures in ductile materials. · 

Implications of the energy balance as applied to fracture in 
elastic and elastic-plastic materials are discussed in the following 
sections. It will be seen that the surface energy term, r , dis
cussed above bas an equally important role in determining fracture 
conditions from elastic-plastic ~ontinuum solutions as does the usual 
surface energy term employed by Griffith! in connection with an 
elastic solution. 

STATIC FRACTURE IN ELASTIC MATERIALS 

Conditions determining fracture in elastic materials, as provided 
by the energy balance, have been discussed by Rice and Druckerl6 in 
connection with some general results on the introduction of voids or 
slits into a loaded stable elastic material. Results, as specialized 
to crack extension, are given here. The postulate of stability as 
introduced by Druckerl7,18 defines a class of time independent materials 
such that for any stress and deformation states (1) and (2), one bas 

J(2)[ (1) 

(~) (}ij - (j"ij J dt .. f o, 
l.J 

(12) 

a generalization of the requirement for uniaxial stress that an 
increase (decrease) in strain causes a corresponding increase (de
crease) in stress. For such materials, one may show that crack 
extension necessarily involves an energy surplus which is available 
for conversion to surface energy. In terms of {5), with dynamic 
terms omitted so that 
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f fJ (b) ((f.~ -CJ .. )dE.·) dV = rA' 
V (a) lJ 1J 1J 

(13) 

this means that the volume integral is non-negative. Since elastic 
materials are reversible, the integration path may be reversed so that 

(0" .. -0"' .. )df .. = (<f. -6 . . )dE .. whlch, by (12), 1s J (b) b . J(a) b . . 

(a) lJ lJ 1~ (b) lJ lJ lJ 

non-negativefor stable elastic materials, proving the desired result. 
This result may also be deduced directly from the theorem of 

minimum potential energy (which is implied by material stability}. 
Letting 

energy 

E 

v<s> = J-0" .. dE .. 
0 lJ lJ 

be the strain energy density, the potential 

P =J V(f)dV- f T.u.d.A -J F.u.dV 
V - A ll V 11 T . 

(14) 

takes on, in the equilibrium state, an absolute minimum on the class 
of all compatible displacement fields satisfying displacement boundary 
conditions on Au. Comparing with (1) and omitting dynamic terms the 
energy balance becomes 

(15} 

with the requirement for an energy surplus being Pb~ Pa. The dis
placement field u! of the initial state (a) clearly is compatible and 
satisfies displacement boundary conditions for the extended state (b). 
Thus by the minimum princi&le, since surface tractions on AT and body 
forces remain unchanged, P ~ pa, proving again that crack extension 
necessarily creates an energy surplus. 

Consider two different elastic bodies, labeled (1) and (2), of 
the same material with both sustaining cracks, and suppose the loadings 
are such that in identical arbitrarily small volumes V0 surrounding the 
crack tips both have the same initial stress state<T.~J. =0".~2 ::().~ 

lJ lJ lJ 
before crack extension. Equilibrium then also requires F~ = F? ~ F. 

1 1 1 

in V0 • It is shown below that if conditions for fracture are met in 
(1), they are also met in (2). This result is closely related to the 
local nature of the fracture criterion obtained from the energy balance; 
as a special case one has the result that for identical bodies the 
fracture criterion is independent of the method of load application 
(imposed surface tractions, imposed displacements, or any combination) 
provided that the same stress state results near the crack tip for 
all methods of loading, as proven for linear clastic materials by 
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Irvin19, Bueckner20, and Sanders21, 
Dropping dynamic terms from (8), it is clear that both bodies 

(1) and (2) simultaneously meet fracture conditions if the difference 

Ll(A')=f [f(b2){0":~2 -c5ij)dEij -J(bl)(cJ.~l -Cf..)dE .. }dv (16) 
Vo (a) l.J (a) l.J lJ lJ 

is of second order in an infinitesimal crack extension A', since then 
the limit of (8) is identical for both. Here the notations (bl) and 
(b2) denote the respective states after crack extension A'. Assuning 
a strain energy ft:nction ·exists so that the integrals arc path in
dependent, (16) may be put in the form 

r 

J { b2 bl bl a r(b2 ) 
~(A'}= (0:. -6" .. ){f .. -f .. )+) 

vo l.J lJ . l.J . lJ. (bl} 

b2 
(<J: . 

l.J 
- CF . . )dE.·} dV. 

lJ l.J 

(17) 
Considering only stress paths satisfying T. = 0 on A' in the inner 

. l. 
integral, an application of Green's theorem leads to 

f { b2 bl bl a r(b2)'b2 l 6(A')= (T. -T. )(u. -u.)+ (T. -T.)du. dA, 
Ao l. 1. 1 1 (bl) 1. 1 l. 

{18) 

where A0 is the bounding surface of V0 , T1· = CJ' • • n. with n the outvard 
l.J J -

normal from V0 , and where the usual terms containing body forces 
caned. The term Ti represents any set of surface tractions on A0 
which pass from those of state (bl) to (b2) vhile remaining in . 
equilibrium with body forces Fi in V0 • Such a set may clearly be 
chosen with Ti between Tgl and T~2 at every point of A0 • Since 
points on A0 are at finite distances from the crack tip, continuity 
of the solution then requires that all terms in (18), and thus A(A'), 
be of second order in A', so that if the fracture criterion of 
equation (8) is satisfied for one body, it is also satisfied for the 
other. 

When the material is linearly elastic, the existence of a strain 

. . J(b) crh 
energy funct1on results 1n ( .. -~-.)de .. 

(a) l.J 1J 1J 

€.~). 
lJ 

Thus the fracture criterion of (8) and (11) becomes 

Al!~ 2Al I f (0'.~ -().~)(f.~ - f.~)dV 
~o V l.J 1J 1J l.J 

0 

lim 
= - A '-too 
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The latter form of (19) is the equation used by Irwin4 to express 
the energy release rate as o. qu.a.dratic function of elastic stress 
intensity factors for the opening, sliding, and warping modes of 
crack extension, thus verifying his result. 

Equation (19) may be used to evaluate recent conclusions by 
· Swedlov22 , recorded also by Berry23 , that a uniform stress field 
acting paralled to a straight crack, and inducing no stress singu
larity, may influence the results of an energy balance.· Consider
ing a crack of length 1 under plane strain conditions subjected to 
stresses Sx imposed paralle~ and Sy imposed perpendicular to the crack 
line, as in figure 2, it is reported23 that when the plane is in
finite an energy balance based on linear elasticity leads to (7fi./32G) 

J s2 - (l-41J) S S 1 = r, where G and )} are the shear modulus and "L y X y 
Poisson ratio. The inappropriateness of this result is readily 
shown. The energy balance when transformed to (19) involves only 
the stress and strain differences (cr.~-().~) and (E.!?- f.~) due 

lJ lJ lJ lJ 
to an increment of crack extension. For a linear material, super-
position indicates that these differences are the sum of differences 
induced separately by the loadings Sx and Sy• But Sx induces uniform 
stress and strain fields which are unaffected by crack extension, so 
that the contribution of Sx to (cr.~-~-~} and (f.~- E.~) is zero, 

lJ lJ lJ lJ 
and the result of an energy balance is independent of parallel stress 
Sx' in conflict with 22 

Alternately it vas shown earlier that, as a direct result of 
the minimum potential energy principle, crack extension necessarily 
makes the potential energy diff~rence (pa - pb) non-negative. 
Comparing (15) in limit form, l~o !_ (pa- pb) =r, with the result 

A' 
of22 as given above, it is seen possible to choose Sx so that the term 
corresponding to the potential energy difference is made negative. 
Thus the validity of the cited result of 22 would be a contradiction 
of the,minimum potential energy principle, the latter being a well 
known direct consequence of the equations of linear elasticity. 

STATIC FRACTURE IN ELASTIC-PLASTIC ~~TERIALS 

Under conditions accompanying brittle fracture in ordinarily 
ductile elastic-plastic materials, the energy balance, with proper 
interpretation of the surface energy term and a reasonably descriptive 
continuum solution, may be expected to provide a criterion for crack 
extension. General results equivalent to those cited for elastic· 
materials rave not been obtained, as the proofs depend on the existence 
of a strain energy function. However, some interesting results on the 
role of surface energy, r ' and the necessity of work hardening be
havior in a continuum description are indicated. 

It will be convenient for purposes of clarity to write the energy 
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balance of (l) in terms of the familiar energy release rate as intro
duced by Irw·in2, 4 • Consider a straigat, through the thickness crack 
in an elastic-plastic plane as in figures 3 (a) and (b) under condi~ions 
inducing a stress state depending only on x1 = x and x2 = y, and base 
all calculations on a unit thickness in the x3 = z direction. Then A£ 
= A'/2 of figure 3 is the increment of crack length (A' being the area 
of both sides of nevly created surface). Strain increments rna\· be 
split into a recoverable elastic part df. ~ and a permanent pla;tic 

p . e p 1J 
part dt .. , v1th dE-.. := df .. +dE.. • The energy release rate, 1i, as 
introdu~Jd by IrwiAJis th~Jnegati~e of the rate of change of potential 

energy, P =j [(:r: .. df.~ ~dV -J F.u.dV -fA T.u.dA, with respect to 
V )' 1J 1J J V 1 1 T 1 1 

crack length, V being the volume of a unit thickness of figure 3. 
Thus 

J.i lim 
= l1£~o [ f b a f b a ·J l!(b) e) ] 1 T.(u. -u.)dA+ F.(u. -u.)dV- () .. d6 .. dV. 

l.li AT. l l l. V l l l. V (a) 1 J l J 

. (20) 

A ?~k~tic dissipation rate, ; , is defined as the ener~f irreversibly 
d)!tE>ipated by plastic flov during a. unit crack extension, as given by 
the continuum soluti~n. Thus 

P = ;1:. ~) v 11::: 0:/ti; }dv (21) 

Comparing (20) and (21) to (1) with dynamic terms omitted and noting 
that Al = A'/2, the energy balance takes the familiar form 

..f:1 = p + 2 r .. < 22) 

The interpretation of terms on the right is somewhat different 
from similar equations 2,3,4. In these works, r vas interpreted as 
the usual surface energy and p the total plastic vork rate; here p 
represents a modified surface energy as indicated earlier and p the 
plastic work rate estimated from continuum considerations. Since 
the same transformations of the energy balance leading to the forms 
of (8) and (11) are valid here, one has 

lim 1 f I f { b ) b l J:1- P = ... ~~ AIJ (cr .. - <J .. )df .. dV 
.... ~ o ~}.. V {a) lJ lJ 1J 

1 . 1 f { f (b) } -- 1 m - T d dA 
- M4o /Jf A' (a) i ui 

(23) 

It is important to note that the quanti ties .ti and p, as ca1cula ted 
from (20) and {21), are obtained directly from an appropriate solution 
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for an extending crack and depend only on the applied loads. In 
particular, the plastic dissipation rate is, prior to insertion in 
a fracture criterion, not a material constant as seems to be commonly 
assumed, but rather the result of a calculation that may be carried out 
quite independently of the question as to whether the material under 
consideration actually vill fracture at the given applied loads. 
Assuming all applied loads in figure 3 proportional to some loading 
parameter Q, this dependence of the eriergy rates on applied loads 
is indicated by :ti = ,2i.(Q) and p = p(Q). The fracture criterion (22) 
then becomes the implicit equation for the value of the loading para
meter at fracture 

(24) 

with Q = Qr at fracture. This equation is depicted in figure 4, 
where ~(Q) is shown by the solid line and p(Q} by the dashed line. 
For a perfectly elastic material p(Q) = 0 (no plastic dissipation); for 
an elastic-perfectly plastic material (no work hardening) it is shown 
later that if stre~ses vary continuously during crack extension one has 
p(Q) =Al(Q) for all Q so that the point of fracture is never attained 
(that is, all the released potential energy is dissipated plasticly, 
regardless of the applied load level). The difference )j- p in figure 
3 is show~ as an increasing function of Q, and this turns out to be the 
case for the simple model analyzed in the next section. More 
generally, consider the last form of ~quation (23} for Ji -p. As the 
loading parameter Q is increased one expects both the surface tractions 
T~ initially acting on A' and the displacements u~, through which they 

1 1 ' 
are relaxed in the process of creating new surface, to also increase, 
suggesting that the negative of work done in removing these tractions 
and thus, by (23),~- p are increasing functions of Q. 

The essential point which emerges, as a necessary consequence of 
the Griffith theory applied in conjunction with continuum estimates of 
energies involved in~and p, is that the value of the load at fracture 
is determined by the surface energy with plasticity acting only to 
alter the functional dependence of ti- p on applied loads. Dimensional 
considerations of a later section lead, in the case of small scale 
plastic behavior, to a quantitative estimate of the manner in which 
fracture strength depends on surface energy. Such a dependence 
seems not fully appreciated in previous work2,3 where, since 2f' is 
generally negligible in comparison to the value of p at fracture, 
the fracture criterion is written as~(Q) = pf, with Pf considered as 
a constant characteristic of the plastic dissipation rate at fracture. 
Surface energy is negligible in this additive sense, but as indicated 
by figure 3, the value Pt of the function p(Q), at fracture, is essen
tially determined byr • Further, for cases where plastic yielding 
is on a large scale in comparison to geometric dimensions, the func
tional dependence of p(Q) on Q may be appreciably altered and con
sequently the value of Pr is not expected to be a fixed material 
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property. 
The influence of chemical attack on the mechanical strength of 

metals has been indicated in24,25; in general both the mechanical 
stress-deformation properties and surface energy are altered.· There 
are, however, situations in which the time of chemical exposure is 
sufficiently short so that volume diffusion into the material is 
negligible and stress-deformation properties are essenttally unchanged. 
This may occur in experiments24 where specimens are fractured imme
diately after surface wetting, and the embrittling agent reaches 
material to be fractured by following the newly created crack surface. 
Vhen stress-deformation properties are unaltered, the functional 
dependence of~- p on Q remains as in the virgin material and pre-
sumably only the surface energy, r ' is decreased by the embrittling 
agent present near the crack tip. The geometrical picture of figure 
4 then predicts the observed decrease in fracture strength of roughly 
the same order of magnitude. If a critical plastic dissipation rate 
controlled fracture, no decrease in st~ngth would be noted in such 
situations. 

It is now shown that if stresses change continuously during 
crack extension everywhere in V except at the crack tip, an elastic
perfectly plastic material carrying bounded stresses results in~= 
p for all levels of applied load, so that crack extension involves no 
energy surplus and fracture, according to the Griffith theory, cannot 
occur. This result, though not obvious in the presence of possible 
strain singularities at the crack tip, suggests the Griffith criterion 
of fracture to be associated with failure through the production cf 
high local stresses. Splitting strain increments into elastic (re
coverable) and plastic parts, (23) for):i- p becomes 

Ji- P = , .. o (0" .. -().' .)df .. + (0: .-<f.}d€-.. dV, (25) lim 1 J { J (b) b e f(b) b p} 
£\,.--+ o L1J. V o (a) lJ lJ lJ (a) l.J l.J l.J 

where, as in deriving (8), continuity everywhere but at the crack tip 
allows the replacement of V by any arbitrarily small finite volume V0 
surrounding the crack tip. 

Following the continuum theories of perfect plasticity, a fixed 
convex yield surface in stress space is assumed such that if plastic 
flow occurs, ~ is on the yield surface and the plastic strain incre
ment, dsP, has the direction of an outward drawn normal as in figure 
5. Consider the term ( CJ. ~ - cr' .. }df. I? , which represents the scaler 
product of the nine compon;~t veci~rs (~ -~) and d~ in figure 5. 
If the stress state ~ does not cause plastic flow, dfP = 0 and the 
term vanishes. Iff;[ does cause plastic flow, it is on the yield 
surface. But for a perfectly plastic material the stress state~b 
resulting at a material point after crack extension is either inside 
or on the yield surface. Thus the convexity of the yield surface 
and normality of the plastic strain increment necessarily implies 
that the scaler product of (~b -Jr) and d£P is non-positive, so that 
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{0'.~ -d . . )dE.~ ~0 
lJ .lJ .lJ 

(26) 

at every point of the material. Alternately, (26) may be taken as 
a fundamental definition of a class of materials, as by Druckerl7 in 
his stability postulate, with convexity and normality resulting. Vi~~ 

(26), an upper bound for Ji- p results by retaining the first integra.: 
of (25), so that 

lim 1 1 ~ (b) b e } J:J.- p ~ .o_.._ r; (<f .. -()..)dE.. dV • 
w.. ..... o A,., Vo (a) l.J l.J lJ 

(27) 

Vhen the elastic response of ihe material is linear, Hooke's law 
relates Ee to (j' and, if the assumed form admits a strain energy 
function..... "" 

J(b) b e b ·a. eb ea. eb 
(0" .. - <J: . )df .. = t (0" .. -d . . )(E- .. - E .. ) where €: 

{a) lJ lJ lJ _1J l.J lJ 1J -

the elastic strains induced by the stresses s;tb a.nd ~a • 
bound of (27) tor J:l- p becomes · 

u / 1 lim 1 J, ( .< b ..c" a) ( · eb ea. 
,4J,- P ~ ~ .. "~. 7 u .. - u. . E .. - € .. )dv • 

~rO Ll.t. VO 1J l.J l.J . lJ 

€ ea 
a.nd _ a"" 
The upper 

(28) 

. It is now shown that when stresses are bounded everywhere in V and ch1-n 1, , 

continuously with crack length everywhere except possibly at the crud, ·•' 
tip, the upper bound of (28) is zero.· 

Take V0 to be the square of side length s a.nd of unit thicknesft 
in the :z direction. centered at the crack tip of the initial state (n) 
as in figure 6. The integral over V0 of (28) is 

J +s/2 f (f+s/2 (<f.~ - 0". ~)( € ~~ - € ~~)dx} dy • 
-s/2 Jl-s/2 lJ lJ lJ lJ 

Considering the inner integral in x first, curves in figure 5 shov thu 
variation of a stress component (f . . with x for y = 0 (the crack U 11 .,) 

where a bounded discontinuity at tfi~ crack tip may occur, and for S<1u11,' 

non-:zero value of y. Since corresponding elastic strain component:t 
~ e . ' 
~ .. , are related to stresses by Hooke's law, they have similar varlu 
ti~rls with x • Continuity then requires that both the stress dit'ft•
rences {Cf.~ -<f.~} and elastic strain differences (E~~ -e!~) be or 

lJ lJ ] lJ l.J 
order ill (written as 0 (at.. ) for y f:. 0 and for y = 0 except in the rllzs 
continuity region l. ~ x .:S; J.. 2 4£. • Thus for y I= 0 the bracketed i 11 _ 

tegral in x above is 0 [( 4!) ) . For y = 0 the bounded diseontiuu i l.y 

gives 0 [tlt] for the integral in x, a.nd integrating over the height. t~ 
in y results inJ (().~ -a'.~HE~l? -E~~)dV ~soW]. l'he iu. v 1J lJ lJ lJ 

0 
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equality of ( 28) then results in ~- p ~ f ~::0 ~~ { sp (a£J} = s 0 [1] • 
But since V0 , and therefore s, may be chosen arbitrarily small, this 
becomes H- p ~ 0. Since'!- p is non-negative, one bas ~- p = 0, 
or 

~= p . (29) 

under the stated assumptions for a perfectly plastic material at all 
load levels, and the necessary surplus required for surface energy in 
the fracture criterion J.i = p + 2 rr is never attained. 

This result depends strongly on the assumption that stresses 
change continuously during crack extension; the assumption may be vio
lated by a finite line sustaining a stress discontinuity and propagating 
through the material as the crack extends. Available solutions for 
stationary cracks7,10,26 indicate the absence of discontinuities, as 
does the published solution27,8 for an extending crack under longitu
dinal shear. One may, in fact, verify through detailed calculation 
that for the latter solution one has fi = p at all load levels. How
ever, this solution, while perhaps adequate for the purposes of8, is 
not exact since by using the stress field appropriate for a stationary 
crack in the case of a moving crack, the plastic work turns out to be 
negative at some points of the cracked body. The presence or absence 
of prop~~ating discontinu;ties, and thus the general validity of the 
result l1 = p, is thus not completely settled. 

Assuming the generality of (29}, it appears that if a continuum 
theory is to predict fracture through the Griffith criterion it is 
necessary to have a stress singula~ity, or infinite recoverable elastic 
energy'density, at the crack tip for conversion to surface energy, in 
agreement with the notion that fracture through the Griffith mechanism 
is equivalent to the building up of sufficiently high crack tip stresses 
to overcome cohesive forces. This does not indicate that non-work 
hardening perfect plasticity solutions ar.e without usefulness in situ
ations of brittle fracture. While apparently not being capable of 
producing an absolute prediction of fracture strength, they do presum
ably lead to reasonably accurate estimates of how local crack tip 
deformations depend on applied loadings and geometrical parameters for 
actual lightly hardening materials. 

Aside from indicating the predictive inadequacy of the perfect 
plasticity model, the above result confirms that as one passes through 
varying degrees of hardening behavior from the perfect elasticity to 
the perfect plasticity limiting cases, the difference J::i- p passes from 
~ to zero, as indicated in connection with figure 4. Thus for materials 
of moderate hardening one is justified in expecting, on the basis of 
continuum estimates of plastic work, that the observed large values of 
the energy release rate at fracture, in comparison to results of an 
elastic analysis, are predictable. 

It is of some interest to note that the coincidence of a maximum 
stress criterion and an energy criterion is more a consequence of the 
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elastic-plastic model than a general result of the energy balance. 
Consider a material which is capable of carrying only finite stresses 
irregardless of the accompanying strains. If the materia~ is per
fectly plastic, no energy surplus for fracture is available. On the 
other hand, if the material is non-linear elastic, a result of the 
previous section is that crack extension is accompanied by a non-posi
tive change in potential energy. One may easily justify that if 
stresses change at all during the crack advance (as they must to 
satisfy boundary conditions if non-zero stresses are transmitted across 
the new surface before separation)·, the potential energy change is. 
non-zero and an energy surplus is available for fracture. Thus the 
common feature for different types of materials appears to be more a 
requirement of an infinite re~overable energy density at the crack 
tip than an infinite stress, although for elastic-plastic materials 
these coincide. 

ENERGY RATE ANALYSIS OF A SIMPLIFIED MODEL 

In the absence of appropriate solutions for an extending crack 
in a work-hardening elastic-plastic material, it is presently not 
possible to predict fracture strengths from the energy balance( in 
cases where it is applicable). The situation is to some extent 
clarified by the analysis of the simplified elastic-plastic model for 
an extending crack presented here. The model is in no sense quanti-
tatively predictive of the behavior of real materials, and many of the 
important features of plastic deformation are absent. However, the 
model does serve to reflect, in a concrete example, the general results 
presented earlier, and is physically suggestive of the role of surface 
energy and work-hardening behavior in determining fracture conditions 
tor ductile materials. 

Consider two elastic planes subjected to in-plane loadings and 
joined together along a strip of elastic-plastic material of height h 
as in figure 7. For simplicity, the strip material is assumed one
dimensional in that it resists extension or contraction only in the y 
direction (parallel to the direction of applied loadings). No resis
tance is offered to extension or contraction in the x and z directions 
so that o'x =dz = 0 in the strip; similarly, no resistance to shear 
deformation is offered so that all shear stresses vanish in the strip. 
Figure 8(a) shows a crack of length J. in the strip and S(b) the same 
crack after extension by an amount ~! , states (a) and {b) corres
ponding to the initial and extended crack states, respectively, of 
previous sections. Through the properties of the strip, the cracked 
material is stress free and strip displacements are discontinuous at 
the crack tip. 

A typical stress-strain relation for the strip material is shown 
by the curvPs labeled "loading11 and "unloading" in figure 9. The 
static fracture criterion is 1:!. = p + 2r; however, it is not necessary 
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to separately assess the elastic and plastic deformations during 
crack extension and to write explicit formulae forJl and p, as the 
fracture criterion requires only that their difference ~ - p be 
known. From (23), as specialized to the present case, 

J1 - - 1m - T d dA 1. 1h ff(b) } 
- p - Ll~-7 o 4£. A' (a) i u i 

=lim LJ X=i..+A~J(b) C) d[u(top} - u(bottom)J} dx 
M~o Ae_ x=J_ f {a) Y y y 

= !J(b) (j' d[u(top) _ u(bottom)J} 
{a) Y Y Y crack tip , (29) 

t 

where T = (0, -r::f , 0) on the t.op side of the new crack surface, T = 
- y -

. (0, cr ' 0) on bottom side, and the displacement difference arises 
sinceYthe integral on A' is to be carried out on both sides of the 
ne~ly created surface. The final form of (29)' is to be taken at the 
crack tip. In state (a), ( u top) - u< bottom) = 0. Since displace-

y y 
ments are continuous in the elastic planes, the only non-infinitesi-
mal displacement differences arise from contraction of the strip 
material after fracture and, where Ey is the strain in the strip 
material at the crack tip during the transition from (a) to (b), 

( u (top) - u (bottom) J = h(fa - E ) • Thus the difference between the 
y y y y 

energy release and plastic dissipation rates is, for a material which 
unloads in a linear elastic fashion as in figure 9, . 

J(b) 
41 - p = -h (f df = t hO'a (ea -E-b) 
/..J. (a) Y Y Y Y Y ' 

(30) 

whereO"a is the stress at the crack tip before extension, and(: a and 
b y y 

E represent respectively the strains in the strip material before 
&~d after extension. Equation (30} may also be derived directly from 
the alternate form of (23) in terms of the volume integral. Inter
preting geometrically through the stress-deformation curves of figure 
9,1:1- p = hx[shaded area of figure 9)= h tcra(Ea -c:;:b), which is 
h times the energy per unit volume recovered byyan ~nloaaing from the 
stress 1 evel ()a • 

Comparingythe fracture criterion1:!.= p + 2r ·with (30), the 
Griffith formulation predicts fracture in the present case when 

1hO'a (€a -Eb) = 2r (31} 
l y y y ' 

or, in terms 
sufficiently 
stated, when 

of figure 9, when the stressola at the crack tip is 
high to make the shaded area e~ual 2r/h or, alternately 
the stress era is great enough to make the recoverable 
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elastic energy balance the surface energy. One may estimate the 
plastic dissipation rate for the strip model. Supposing the region 
of the strip undergoing plastic deformation extends from .x = Lto x = 
f +~in figure 8, OJ being the length of the plastic zone, 

p = h r::f ':.:::..:L dx Jf.+w at-P 

9- yr;p_ 
(32) 

is the plastic dissipation rate, with 0 and f p being the stress and 
y y 

plastic strain in the strip. Consider now cases for which £-P is a. 
y 

function only of x -£.(the distance from the crack tip) and is other-
wise independent of!. This is usually a good spproximation to the 
actual case as the variation with crack length of plastic strain at 
a point some fixed distance ahead of the crack is generally negligible 
in comparison to the variation with distance from the crack tip. In 

~ oE~ such cases ax =- at and (32) results in 

h (), dEP J x=l.. 

x=9+w Y Y 

= h J{a) C) dEP 
0 y y 

(33) 

since in going from the outer edge (x =.f+W) of the plastic zone to 
the cra~k tip (x =£ ), the ptajtic strain varies from zero to that of 
state (a). The integral ( a6 dEP is the total irreversible plastic . J 0 y y 
work per unit volume done on the strip material in bringing it to the 

stress 6a at the crack tip, and is simply the unshaded area between the y 
"loading" and "unloading" curves of figure 9. Thus, geometrically, 
p = h X (unshaded area of figure 9 J . The ratio of~- p to p is then 
the ratio of the shaded area to the unshaded area of figure 9, so that 
in cases where appreciable plastic deformation is required to build up 
sufficient recoverable elastic energy to meet the fracture criterion 
1i- p = 2r , the value of the plastic dissipation rate, p, at fracture 
is expected to considerably exceed the surface energy, 2r , in accord 
with observed results for metals. However, the surface energy deter
mines the value of applied loads at fracture, with plasticity propertir·s 
serving to determine the functional relation between applied load and 
recoverable elastic energy. 

A qualitative explanation for the influence of work-hardening on 
fracture strength results by comparing, as in figure 10, failure 
criteria for strip materials with the same elastic constants but 
different degrees of hardening. The same crack tip stress, O"a, is 

y 
seen to be required for fracture in all cases, but the required strain, 
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Ea , increases vith decreasing work-hardening. When the plastic 
r~gion is sufficiently confined by elastic material surrounding the 
crack tip, elastic constraint causes the applied load at fra~ture 
to increase vith crack tip strain required at fracture and, vith all 
other material properties held constant, the applied load at fracture 
is seen to increase vith decreasing work-hardening. Alternately, in 
terms of energy rates, the potential energy release rate,~, is ex
pected to be essentially unaltered in its dependence on applied load 
vhen the yielded region is small and confined by elastic material. 
But the plastic dissipation rate corresponding to the required re
coverable energy surplus for surface energy, and thus the applied 
load at fracture, increases vith decreasing work-hardening. 

As pictured in figure 10, when the strip is elastic-perfectly 
plastic it cannot fracture according to the Griffith criterion, unless 
fracture conditions are met for a crack tip stress at or below the 
yield point. Here one does not have ~ - p = 0, but rather that 2L -
p is no greater than the recoverable elastic energy corresponding to 
the yield stress. This is not contradictory vith the result of the 
last section since the assumption of stress continuity during crack 
extension is not satisfied due to the discontinuity over the finite 
strip height h. When the strip material is rigid-plastic the model 
corresponds to that studied in28 , 29,9 • Since no energy is recover
able, one has J:! = p at all load levels, in disagreement vi th the 
analysis of29 where it vas erroneously assumed that the potential 
energy release rate vas unaffected by plastic deformation. It is 

. of some interest to note that vhen the strip material is assumed to 1 
be linear elastic, a fracture criterion identical to that of Griffith., 
except for an undetermined numerical factor, results vhen the strip 
height, h, is negligible in comparison to geometrical dimensions of the 
cracked body. This may be shown by a mathematical formulation, not 
reproduced here, of the appropriate boundary value problem for the 
elastic strip analog of the infinite plane vith a crack of length Jt 
under a uniform tensile stress, al. The problem may be reduced to 
a linear integral equation for the stress 61 in the strip. By 
letting Rjh-"'OO in such a vay that J h/ll cr' !cl is bounded and basing 
the length scale on h, the linearity ass~res that crack tip stress 
varies as~a = (const.)CJJlr.(ih. Elasticity of the strip requires 

y 
that Eb = 0 after crack extension, and vithca =6afE as appropriate 

. y y ~ 
for plane stress, the fracture criterion (31) becomes 

2 
t he5'a (Ea -Eb) = (const.) tSE;e = 2(1, (34) 

y y y 

in essential agreement vith Griffith except for the constant which 
may be determined only by a complete solution. Thus the strip model 
leads to correct results in the tvo limiting material idealizations of 
perfect elasticity and perfect plasticity. In general, however, 
results should be expected strongly dependent on the artificially 
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introduced strip height so that predictions for work-hardening 
materials are at best qualitative. The technique de~cribed above 
for the elastic strip is equivalent to obtaining a solution which 
asymptotically approaches the form of the elastic crack solution as 
dominated by the crack tip singularity; a similar technique has been 
shown valid for small scale yielding of a plastic materiallO, 

DI~~~SIONAL ANALYSIS 

The mode of dependence of fracture strength on surface energy 
for a work-hardening elastic-plastic material may be predicted 
through dimensional considerations in cases where the yielded zone 
is small in comparison to geometric dimensions at the point of 
fracture. Consider an infinite plane sustaining a crack of length1 
and loaded with a uniform tensile stress, C), so as to induce plane 
strain conditions. For an isotropic material, elastic strain in
crements dfe are related to stress increments d§ by the usual form 
of Hooke's law involving Young's modulus E and Poisson's ratio V . 
An appropriate form30 for plastic strain increments d£P under the 
assumption of isotropic hardening of a stablel7,18 material is given 
i~ terms of~ loading function f = f(~) of the three stress in~ariants, 
with f(~) =~ (T = initial yield stress) the initial yield surface in 
stress space? ang subsequent yield surfaces determined by the largest 
~alue of £(~) attained during the course of previous plastic straining. 
Components of plastic strain increment are non-zero only for stresses 
on the current yield surface with-stress increments that increase £, 
in which case 

P )\ of de .. =.n{£) ::. 6 df , 
l.J u ij 

(35) 

vithl\(f) being the isotropic hardening function. Since ~p is 
dimensionless and f is a function of stresses, it is clear that any 
material constants appearing in~ and f may always be expressed in 
units of stress, so that (35) introduces a set of constants rl' ~2' 

.. , r vi th stress dimensions. 
n 
The expression for ~ - p of (23) as obtained from a continuum 

solution may at most depend on(), ~ , E, V, T 0 t'll, .. , T , vi th the 
n 

fracture criterion {22) introducing the additional variable r . The 
fracture criterion is, however, local in nature. It is well known 
that for elastic materials, local stresses and deformations depend on 
applied loads and geometry only through the stress intensity factor K, 
vith K = 01~ in the present case4 • For perfectly plastic materials, 
it has teen shown in7,8,9,10 that when the yielded zone is small in 
comparison to geometric dimensions (or alternately, when <Jis small in 
comparison to the limit load), local stresses and deformations remain 
determined by the stress intensity factor of an elastic solution. 
Thus one may generally expect in cases of small scale yielding that 
the local conditions determining .2:1. - p depend on (J and f. only 
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through the combination K = Oi)Ki /2 • For such cases· the independ~nt 
dimensionless combinations of relevant variables are Kj JEFf= <:F}Tfi/2Ef1, 

To/ Ll tn V ' E, /E, ... , /E, , so that a plane strain fracture criterion 
(assuming J:i- p ¢ 0) takes the form 

K _ CJ !""if£ = ~r g( 't"o ti T n , J ) ( 35 >' 
- " ~ J .l:l J . E ' E ' ••• ' E ' v . 

For comparison, the criterion obtained for elastic materials by 
Griffithl and generalized by Irvin2 is 

(36) 

The mode of dependence of fracture strength on surface energy for 
small scale yielding is then identical to the dependence indicated 
for elastic materials. In such cases it is reasonable to estimate 
the potential energy release rate by the linear elastic formula4 J1 = 
(1 -V 2 }K2/E, so that (35)' leads to a fra~ture criterion in the form 

tU r (to 'tl; 7:: n; ~ = 2 f /E, E, ... , E, ) , (37} 

indicating that at fracture the energy release rate is directly pro
portional to the surface energy term as multiplied by some function f 
depending on material constants describing the elastic-plastic behavior. 
For linear elastic materials t is unity; previous considerations suggest 
that as one considers various types of behavior from high to light ~ark
hardening, f increases greatly from unity, approaching infinity in the 
perfectly plastic case. · 

It has recently come to the author's attention that expressions 
indicating a similar dependence on surface energy have been proposed 
by Gilman31 and Westwood and Kamdar32, based on considerations of 
plastically relaxed stress fields near cracks •. _ The latter work leads 
to estimates of environmental embrittlement based on alterations off' 
due to chemical attack. 

The nature of plastic deformation suggests that the functional 
forms appearing in (35)'and (37) are not unique, but rather dependent 
on the way stresses acting before crack extension were reached~ Thus 
the criterion for the first increment of crack extension after loading 
from a virgin state may differ from the criterion for a subsequent 
increment, since the method of plastic straining involves prior crack 
extension as vell as changes in applied load. Such considerations. 
although based on a strain criterion instead of an energy balance. have 
ledll to an explanation of slow crack growth prior to catastro-phic 
fracture. 

In general, dimensional considerations require the introduction 
of a material property with dimensions of length to obtain a fracture 
criterion, as crack length is the only parameter entering a continuum 
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analysis without stress dimensions. This is provided by the ratio 
r/E in the Griffith type theory discussed here. For situations in
volving a kinematical mechanism of void coalescence by plastic flow, 
a mean void diameter might provide the required length dimensionl5, 
It appears33 that dimensional analyses of crack extension rates under 
repeated loadings (fatigue) may be brought into accord with experimental 
data by including among relevant variables such a characteristic length 
associated with fracture. 

Williams34 discusses the application of a Griffith-type energy 
balance to fracture in visco-elastic materials in another paper 
presented at this conference. It is of interest to note that, similar 
to present conclusions for elastic - plastic materials, he finds sur
face energy to essentially determine fracture strength, even though it 
is normally small compared to viscous dissipation, when the appropriate
ness of a Griffith approach is assumed. 
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