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Plastic Yielding at a Crack Tip 

James R. Rice* 

~Ckaot: A model for plastic yielding near a crack tip, based on ideas 
ut ~ale and Barenblatt, is examined for the case of a through the thick
U.$0 orack in an elastic plane. General methods of solution for the de
formation and stress distributions, accompanying original loading, unload
ing, and cyclic loading, are given for a class of cracked configurations 
.l.o$ded symmetrically about the crack line. A principal result is that 
to~ oases where the size of the zone of plastic deformation is small compared 
tQ planar geometric dimensions, stress and deformation near the crack tip 
ve determined solely by the Irwin elastic stress intensity factor for 
original loading. Similarly, for unloading and cyclic loading, variationa 
in stress and deformation near the crack tip are determined by correspond
~ variations in the stress intensity factor. Implications of results 
t or the mechanics of fracture and fatigue crack propagation are discussed. 

The precise determination of the influence of plastic yielding on the 
deformation and failure at a crack tip is a difficult and presently un
resolved problem. Yet such information is needed for accurate predictions 
ot the behavior of cracked bodies under static loads causing fracture and 
repetitive loads causing fatigue crack propagation. Considerable progress 
has been made by McClintock ( 1) and co-workers in the special case of cracked 
bodies under anti-plane loadings occurring in torsion and longitudinal shear. 
~t predictions in the technically important case of tensile loadings per
~ndicular to the plane of a crack are presently based, in essence, on an 
elastic stress analysis or an analogy with elastic-plastic solutions for 
longitudinal shear. Such an elastic analysis has been used by Irwin ( 2} and 
Orowan l 3 l , in extending the classic work by Griffith ( 4 j on fracture of 
brittle bodies, to develop a criterion of fracture at a crack tip for ductile 
materials. Paris (5,6) has further used the elastic stress analysis to 
determine the parameters influencing the rate of propagation of a growing 
fatigue crack. ~qide from more or less empirical corrections to the elastic 
solution so as to account for plastic yielding, the influence of ductile 
material behavior has not been taken into consideration. 

The role played by plasticity is to some extent clarified by the analysis 
of a highly simplified model presented here. The model for the influence 
of plastic yielding, to be described below, will be called the rigid-plastic 
strip model. The work is motivated by the Barenblatt ( 7 J approach to 
brittle fracture and by a paper of Dugdale ( 8 j on the yielding of steel 

* Assistant Professor of Engineering, Brown University, Providence, R.I., 
u.s.A. 
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sheets containing slits . Goodier and Field (9) and the writer, in an 
unpublished report (10), extended the work of Dugdale by discussing the 
problems of static fracture and fatigue crack propagation, respectively, 
through analysis of essentially the same simplified model for the i nfluence 
of plasticity. The intent of this paper i s to extend the analyses of 
(8,9, and 10) to a wide class of crack problems, to point out the relation 
of elastic sol utions to the elastic-plastic solutions of the strip model, 
and to discuss implications for the static fracture and fatigue of cracked 
bodies. Only the case of straight, through-the-thickness cracks in in
finite planes loaded so as to induce a state of plane strain or generalized 
plane s tress symmetrical about the crack line i s considered. Some relevant 
results from the elastic solution of crack problems are summarized first. 

Elast ic Approach t o Crack Problems 

The elastic solutions to crack problems reveal that stresses are 
singular at a crack tip. For the type of plane problem considered here it 
h~s been shown l11) that the stress ~y acting (with reference to figure 1) 
d1rectly ahead of the crack tip (x=O) at points along the x axis always 
has the functional form 

( 1) 

Here K is called the "stres11 intensity factor" and depends on geometric 
dimensions such as crack length and linearly on the applied loading in a 
manner which may be determined by a complete solution of the elastic 
boundary value problem. The expression O(xt) denotes other non-singular 
terms in the complete expression for 6""y· Retaining only the singular 

term of (1), which clearly dominates the elastic stress field near the 
crack tip, it is seen that the influence of loadings and crack geometry 
on the elastic stress field near the crack tip is felt solely through the 
stress intens ity factor K. 

Thus if plastic yielding occurs only in a small zone near the crack 
tip and does not seriously redistribute the stresses, the factor K is a 
single parameter which determines approximately the stress state near the 
crack tip, and fracture will occur when K reaches a critical value charac
teristic of the material under consideration. This is the essential 
result of Irvin's (2) fracture theory; the result is usually obtained 
t hrough an energy balance approach, expressing the fracture criteria as 
t he achievement of a critical value of the energy release rate ( 2 l 

(2 ) 

where G is the shear modulus and tr = 3-411 for plane strai n and '1 = (3-li) / 
(1+11) for generalized plane stress, 11 being the Poisson ratio . The 
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fracture criterion based on a critical value of energy release rate i s 
• ••n , from (2), to be equivalent to the achievement of a critical stress 
intensity factor. Actually experiment shows (2) that the critical stress 
intensity factor varies considerably with plate thiclmess for thin plates. 
This is presumably due to a transition from a plane strain deformation 
1nrolving slip in the plane to a plane stress deformation which may in
volve slip through the thiclmess, a three di mensional effect which quite 
naturally is not reflected in the plane elasticity solution. For this 
r•aaon the critical stress intensity factor is in reality dependent not 
only on the material under ·consideration but, for thin plates, also on the 
plate thickness. 

In the case of cyclic loadings, if again the zone of plastic deforma
tion is small and stresses are not seriously redistributed, the history 
ot variation of the stress state near the crack tip depends approximately 
only on the history of variation of the stress intensity factor K. Thus 
one expects the rate of fatigue crack propagation to depend on the varia
tion of K, and this is the result found by Paris. Further, it has been 
experimentally determined (5) that for cyclic loadings the crack growth 
rate depends primarily on the amplitude of the cyclic variation inK and 
is relatively insensitive to the mean value of K. 

In summary, the results of the elastic analysis are that all problems 
dealing with the static fracture and fatigue of cracked bodies and in
volving widely different loadings and geometries are essentially identical 
problems with the effect of a particular loading and geometry sensed only 
through the relevant expression for the stress intensity factor, K, provi
ded that plastic yielding does not effect a major redistribution of stress. 
In what follows, by the analysis of a simple model for the influence of 
yielding, we shall attempt to see how plastic yielding may modify these 

'· results and to what extent the elastic str ess int ensity factor determines 
the elastic-plastic solution. 

1.:3 a preliminary, the Westergaard ( 121 method of solution is summarized 
for plane elasticity problems symmetrical about the x axis. Where F(z) 
i s an analytic function of z = x+iy, stresses may be expressed as 

a"y = Re { f(z) J + 'j I ... { F(zJ} 

a"x : Re { FCz>J - yl.,{F'coz>} 

cxy = - y Re~F(z>J 

(3) 

For cracks along the x axis F(z) is sectionally holomorphic with a line 
of discontinuity corresponding to the crack and with an inverse square 
root singularity at the crack tip. The stress intensity factor is, by 
comparing (1) and (3), and supposing the crack tip to be at the point 
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x=c, 

(4) 

The displacement in the y direction is 

.!liL s J2. } v- 4 c:ri.., 1 F<z>~z- 2~yRe\r<7.J}, c 
(5) 

where G is again the shear modulus and 7 is defined as above in terms of 
the Poisson ratio through the form appropriate for plane s train or 
generalized plane s tress. 

Rigid-Plastic Strip Model 

As a . firs t ~tep beyond the purely elastic treatment of crack problems, 
a model ~s cons~dered which introduces into the analysis some features of 
the ~l~tic yielding at the crack tip, but at the same time presents a 
suff~c~~ntly simple mathematical problem so that a complete analysis may 
be carr~ed out. The model through which it is proposed to simulate the 
response to lo~din~.s of a cracked elastic-plastic plane, as in figure 2 
(a), i s shown 1n f1gure 2(b) and is called the rigid plastic strip model. 
Through . t~s representation the cracked body becomes two elastic half 
pl~es JO~ned together along a strip of rigid-plastic material, with a 
vo~d ~ ~he strip material simulating the crack. The strip is rigid
plastlc . ~ the sense that when a y direction normal stress, ~ , acts on 
the str~p, the material does not extend or contract in the y airection 
if Jcry/<5"m(whereo-m is the yield stress) but is capable of unlimited 
deformation if Jay I = 5"'m· It is assumed that the material offers no 
re s~stance to extension or contraction in the x direction. The plastic
str~p may be thought of as the plastic analog to well known elastic 
foundation models. 

~e strip model is, of course, a rather incomplete abstraction of 
real~ty; th~ zone of plastic deformation has been artificially confined, 
work . h~e~ng has been ignored, no account has been taken of the influence 
of .. b~~nal and tri~ial stress states on the yiel d condition (although 
th~s ~s not a PS:t~cularly severe restriction for thin sheets under plane 
s tre~s), and res~s~ance to extension or contraction in the direction per
pe~~cular to lo~d1ng has been ignored . Nevertheless, the rigid- plastic 
st:~p model does- 1ntroduce a yielding type behavior into the problem at 
po~t~ ahead of the crack where one knows that plastic relief of high 
elast~c stresses must occur. Further, although the model is clearly in
capable of yielding detailed features of the plastic deformation near the 
crack tip, we may expect a reasonably accurate prediction of gr0ss features 
such as the plastic zone size, the functional dependence of plasticity 
effects on external loadings and geometric dimens ions, and the behavior 
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\lpon unloading and subsequent reloading. 

'l'wo general classes of cracked infinite planes symmetrically loaded 
about the crack line will be considered: 1) bodies sustaining semi
infi nite cracks extending from x=<l to x=>-oovhere a is the distance of the 
crack tip from some fixed point, as in figure 3(a), and 2) bodies sus
t aining a finite crack extending from x=O to X=>-2a for which the loading 
i s also symmetric about a line perpendicular to the crack center, as in 
figure 4(a). The corresponding rigid-plastic strip models are shown in 
fi gures 3(b) and 4(b), where the zone of plastic deformation,ct}, has been 
removed from each s trip and stresses of yield strength magnitude&m, which 
the plastic material induces on the elastic half planes, have been drawn 
over the region wof plastic deformation. Because of the properties 
assumed within the rigid plastic strip, the solutions in the elastic 
regions of the elastic-plastic problema of figures 3(b) and 4(b) are 
si.mply the elastic solutions to crack problems where the lengths a are 
replaced by lengths a+~a~, and the yield stress ~m acting over the distance 
w i s added to the external loadings. 

The problems of figures 3(b) and 4(b) can be solved in general terms, 
sufficient to cover all possible crack problems of type (1) and (2) above. 
We assume that the stress intensity factors and Westergaard stress functions 
of the elastic solution to the crack problems shown in figures 3(a) and 4(a) 
are known and denote these by 
Ki1)(a), Fi1)(z,a) and xi2)(a), Fi2)(z,a) for the semi-infinite crack and 
finite crack cases, respectively. Let the solutions to the crack proQlems 
defined by yield strength loadings <t'm acting ove~ the distances (f) at the 
crack tips (see figures 5 and 6) be denoted by K~~)((JI), F~1 )(z,w) and ~2) 
(~,a), F(2)(z,~,a) for the semi-infinite and finite cases, respectively. 
Since on~ is interested only in superposing solutions, the fact that 
physical cracks loaded as in figures 5 and 6 would have one side of the 
crack running into the other is, of course, of no interest. 

The size of the plastic zone,al, is determined by the condition that 
stresses should be bounded at the outer edges of the plastic zone. This 
means that the s tress intensity factors due to the external loadings (with 
a r eplaced by a~) and due to the yield strength loadings should sum to 
zero, and thus w is the solution of 

(1) (I} 0 Ke (a.t-w) t Kp (W) = (6-1) 

(6-2) 

f or the two classes of problems considered. The Wester~ stress 
functions for the upper elast i c half planes of figures 3(b) and 4(b) arc 
obt ained by adding the stress functions of the e~ternal loadings, with a 
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replaced by a+•and z replaced by z-~, to the stress functions of the 
yield strength loadings shown in figures 5 and 6, Thus the complete 
stress functions for the semi-infinite crack and finite crack cases are 

F''> 
(1) (I) 

(7-1) (Z) = Fe (z-w,a+W} t Fp (z,w) 

Fc2> (1) Fm 
CZ) = Fe ( z -c.t.l , a.., cv > T p (Z.,W ,a.) 

1 (7-2) 

respectively, where the ~'s are determined by (6-1) and (6-2), respective
ly. The solution of the rigid-plastic strip model for which Ke and Fe 
are known functions is thus completed if Kp and Fp are known; expressions 
for the latter are given below. The Westergaard stress functions F~1) 
(z,w) and F~2 )(z,w,a) are obtained by using the solution to concentrated 
wedging force loads on a crack as a Green's. function to generate the 
solution for distributed loads of intensity IYm· The algebra is tedious 

and details will therefore be omitted. The resulting solutions, which 
may be readily checked by seeing that the boundary conditions of figures 
5 and 6 are satisfied (with proper interpretation of branch cuts), are 

(8-1) 

F (2) 
p (:Z,W,d.) 

The corresponding stress intensity factors for the two classes of problems 
under consideration are, by an application of (4), 

(1) 12 
Kp (W) = -2 Jfr On, {cV (9-1) 

k (.l.) ~ ( A I -lr a J r (UJ,ci)= -O",..vrT(d.+UJ) J- 1TM-K.. a+te> • (9-2) 

Equations (6-1) and (6-2) for the size of the plastic zone,~, become 

r£ .C: (I J 
2ot7T~mvW = ke. (a.+(J)) (1~1) 
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(1~2) 

An important result follows by rearranging the above two equations in the 
form 

-,r (•I Jz 
g<J.,: [ ke (a +(.I}J ( 11-1 ) 

::: a.+ _.JI_ { r .. , l.z.( a &><r,O: ke (d.+wJ a::;w) + .... - cl 
( 11-2) 

Assuming ti) to be a negligible fraction of a and neglectin~ ~l terms of 
order II)/ a in comt>arison to unity, one has Ke(a-!111) ~ Ke(a) = Ke, and both 
(11-1) and (11-2) result in 

( 12) 

Thus when the scale of plasticity is small (ce~«.a), it is seen that for 
all crack problems, irrespective of the manner of loading, the plastic 
zone size depends on the loading and geometry only through the elastic 
stress intensity factor Ka· ~ considering some specific loadings in 
the next section it will be seen further that the entire stress and dis
placement field near the crack tip depends also on the loadings and geo
metry only through the stress intensity factor Ke in the case of small 
scale plasticity, although a more complicated dependence is indicated 
when U) is a substantial fraction of a. 

Equation (12) and subsequent small scale yielding equations are 
derived from stress fields for cracks in infinite planes. However, it 
is easily seen that all expressions given for small scale yielding are 
also valid for cracks in finite planes, provided that the plastic zone 
size is negligible not only in comparison to crack length but also in 
comparison to all planar dimensions of the cracked body. When this 
condition is met, the computations o~ (8-1) and (9-1), for effects of 
the yield stresses restraining the crack surfaces near its tip, are 
valid and the effects of finite specimen dimensions are sensed only 
through the relevant expression for the elastic stress intensity factor, 
Ke, appearing in ( 12) . 
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A measure of the plastic deformation near the crack may be obtained by 
olVing for the y direction displacement, v(x), of the rigid-plastic strip 
terial at points along the x axis. Noting that there is zero displace

ant at :z: =w, equation (5) results in 

V(X> = '3;_G ],., { J.x; FczJ dz} 
Cl) 

( 13) 

[n the sequel displacement results are given in a form valid for either 
>lane strain or plane stress. However, the strip model is clearly more 
lppropriate under plane stress conditions where yielding takes place on 
>lanes inclined at 450 with the x-y plane and a maximum tensile stress 
·ield condition governs • 

elutions to Particular Problems 

The results of the analysis are further clarified by considering in 
etail some particular problems representative of different types of 
r ack loadings which arise in practice. TWo problems, each representing 
P&rticular case of the two general classes considered in the last section, 
~e stated below and solved by the general methods of the last section: 

1) An infinite plane with a semi-infinite crack opened by concent-
lted forces P per unit thickness at a distance a from the crack tip, as 
town in figure 7. 

2) An infinite plane with a finite crack of length 2a opened by a 
Lif'orm tensile stress ~at infinity, as shown in figure 8. 

As may easily be verified, the Westergaard stress functions and, from 
), the corresponding stress intensity factors, of the elastic solutions 
the above problems are 

(I) p ( a Yz_ (II .r. P 
Fe.. (z ,a> = 7T(ZMJ ~) 

1 
ke.. (<iJ = ~ ( 14-1 ) 

( 14-2) 

:tually, a uniform compressive stress ()"x = -(Ymust be added to the 
·ess function of ( 14-2) to satisfy the boundary conditions of figure 8. 
ce such a stress field has no influence on the stress intensity factor 
strip model solution, it will be subsequently ignored.) The plastic 

e sizes are obtained by inserting the expressi ons for Ke above into 
ations (10), using (10-1) for problem 1, and (10-2) for problem 2, 
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The resulti ng expressions for the respective plastic zone sizes are 

a P... ~ ] 
W = 2 (( 1 + a~~~ ) ~ -' 

( 15-1) 

( 15-2) 

The complete stress functions for the plastic strip model are found 
through inserting the elastic stress functions, Fe, of equations (1t))into 
the formalism of equations (7), where the functions F~1 )(z,q7) and Fp2 (z,w,a) 
occurring in (7) are given by (8) . It is convenient to repress explicit_ 
dependence on the external loadings P and~ by writing_ the loads as funct1ons 
of plastic zone size,~, through an inversion of equat1ons (15-1 and 2) res-

''· ptctively . There results, after some manipulations, 

I I/ "w(Z-wJ]k 
F (l ( Z.) = .J.: ... ft.-:'( 2 ~w r ... - l' 4 +Z l (1 6-1) 

(16-2) 

for probl ems 1 and 2 respectively, where the value of fl)for each problem 
is gtven in terms of the relevant loading, P erG; by equations (15 ) . 

If one considers values of z of the order of ~ (that is, confine 
attention to points near the crack tit>). and su~~ses that (I) is a negligible 
fraction of a, the last term in (16-1) 1s negl1g1ble and the factor of 

(~tin (16-2) differ s from unity by a negligible amount. Thus in the 

c:Se of small scale plasticity both F( 1)(z) and F( 2)(z) become, for points 
the crack tip, 

F(z) = .z.o.., t:-::.'(~~~ 
71 z-w ( 17) 

near 

which shows that the two problems treated here, involving different loadings 
and geometry, have stress and displacement fields near the crack tip which 
are functionally identical when w <:<a. Recalling ( 12) 
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( 12) 

appropriate when~<< a, (this. may be readily verified independently 
(12) for the two particular problems presently under consideration by 

panding equations (15) as a Taylor series in the applied loadings, 
taining the first non-zero term, and com~aring with the stress in
nsity factors as given by equations (14)), and it is seen that in the 
3e of small scale plastic yielding the crack tip stress and displacement 
~lds depend on external loadings and geometry only through the elastic 
:-ess intensity factor Ke· 'N'hen lJ) is a substantial fraction of a the 
lVe remarks are, of course, no longer valid and quantitative estimates 
.the influence of plasticity may be had through application of equations 
,) for the plastic zone size and (16) for the stress functions. 

The displacements of the rigid-plastic strip give a measure of the 
atia deformation and may be calculated from (13}. The results, valid 
· 0 < x <:w, are, for the two problems 

:•>ex>.,. <'1-ttJ<r..,WJ(t-...X.)U_ 1 x 1 ( tt(t-x/w)j{J 
2TTG,. l W .z ~ "J I- (1-K/W}Ji 

( 18-1) 

3sponding maximum rigid-plastic strip displacements, v0 , occurring at 
~rack tip x=O, are obtained from (18-1) and (18-2) after an applica
of L'Hopital's rule, yielding 

(19-1) 
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(lz T I )f.,W t _S- j,.,_(l + .if-Jj 
2 ver 1.0 Q 

( 19-2) 

t or the semi-infinite crack under wedge forces and finite crack with 
»tresses at infinity, respectively. 

The expressions for displacements in the case of small scale yielding 
raa.y be obtained directly from F(z) of equation ( 17) which has been shown 
to be the limit of F( 1)(z) and F( 2)(a) when W<::<a. Upon application of 
(1 3) one obtains strip displacements 

VOCJ.,. (lzn Ja-,.,J~J 1 (1- K~f-.!.. X.. j,_, ( f+ (t-K(w )}{J} (20) 
.zrr(!r ) z. W 1 1-(1-K/ftJ}k 

t or the limit of v( 1)(x) and v( 2 )(x), and maximum displacement at the 
crack tip 

v. = eu 'Jf.w 
~ 27f(r 

(f'J-t·/) k/ 
/6 tT\S"~t~ 

(21) 

for the limit of vb 1) and vb2), where ( 12), appropriate when tA><< a, has 
been used. Equations (20) and (21) may, of course, be obtained direct
ly from (18-1,2) and (19-1,2) by neglecting all terms of orderliJ/a. 

The results of the detailed solutions given in this section will be 
Used later in a discussion of static fracture and fatigue. The solution 
of other crack problems involving different loadings and geometries may 
also be obtained in analogy to the methods of this section and the last. 
or particular interest from the point of view of practical applications 
would be solutions of the rigid-plastic strip model for configurations 
such as a central crack in a finite ~lane body and an edge crack extend
i ng into a plane body from a free surface. Since the methods involved 
i n the analysis of the strip model are essentially the same methods used 
in the conventional elastic treatment of crack problems (in fact, the 
entire plastic strip analysis may be carried out once the elastic 
Green's function for wedging forces on the crack surface is known), 
methods of solution as in £13-16] might be of use for such problems, 

Unloading and Repeated Loadings 

When the load on a cracked body is decreased one expects the yielded 
material near the crack tip to be forced back toward its original posi
tion and thus yield in compression. This phenomena is investigated 
hare through the rigid-plastic strip model. The analysis is surprisingly 
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simple, for in solving the original loading problem most of the work has 
already been done. To formulate the unloading problem in general terms, 
suppose a cracked body is subjected to a set of external loads propor
tional to some loading parameter L, and that a is some geometric dimension 
indicating crack length. Then in solving the original loading problem 
a relation has been determined of the type (15) giving the plastic zone 
size as a function of load, yield stress, and crack length in the form 

W=Q.(L.,<r .... ,a) . (22) 

The Westergaard stress function for the elastic region above the strip 
has the form (where, as in deriving (16), dependence on the load Lis 
converted to dependence of~ through inverting (22)) 

(23) 

and strip displacements may be written in the form, analagous to ( 18), 

(24) 

Now suppose the load is decreased by an amount .4 L to L-.!1. A 
part of the original plastic zone goes into compressive yielding; we 
shall suppose this zone to have length I{)' and call it the zone of 
reversed plastic deformation. With reference to figure 9 where only 
the upper half plane is shown, the elastic solution which must be added 
to the original elastic solution is one in which the crack is pushed 
shut with a load .41 and in which this closing is opposed by a stress 
2GJn acting over a distance w' in front of the crack, the additional 
strip displacement being zero elsewhere. Clearly~' is chosen such 
that that total stress intensity factor at x=ee}' due to load .1 L and the 
boundary stress 2~ sums to zero. Thus the additional elastic solution 
is functionally identical to the original elastic solution except that 
L i s replaced by -.dL, ()m is replaced by -2~, and t)) is replaced by w'. 
The reversed plastic zone is, therefore, from (22) 

w ' =-Q(-4L -.zcr- a) 
I 1M I • 

(25) 

The stress function and displacement after unloading are obtained by 
adding to the original expressions (23) and (24) the expressions due to 
the added stresses shown in the center of figure 9, the latter 
expressions being obtained from l23J and l24J afte r making the 
substitutions indicated above. I'hus, after unloading, 
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(26) 

V(XJ i 
V ( x, w, a,~,.,)+- Y(x, w',a,-).<J,.,J I o< X<w' 

= (27) 
V(X1 t.),a,<>,.,) I VJ

1 <X<c:J. 

Details of the unloading solution may be readily obtained for the 
two specific problems treated in the last section through the formalism 
of equations (25-27). For the case of wedge forces per unit thickness 
P opening a semi-infinite crack and of tensile stresses <Y opening a finite 
crack, suppose the loads are decreased by amounts .dP and .d~, respectively. 
Then through use of equation (25) and equations (15), the sizes w' of the 
$ones of reversed plastic deformation are 

~f 
LV' • '! {(I + 4-~~ ':-~ ~- f) 

w' = a{sec(-7!1.:lfl) -1) 4-<J.., 

(28-1) 

(28-2) 

resl'ectively. By evaluating (27) at x=O and through use of equations 
(19), the final crack tip displacements in the two cases after unloading 
are given by 

v/'1 = (~ ~~ G"""..,l ( w -2W1
) -t-2i1J {d ( (I +If-f f- (~fJ 

- 4w' t 1 r ( ,.,_ '{J~r., (-'lrJ} (29-1) 

,,P.J = (1+1)0"....3. f {oJ ( (-t- vJ) -1 p9<J (r-tlfJ/ 
Yo 21T€r U 4 f7 ' (29-2) 

respectively. Results for the complete stress and displacement 
! unctions after unloading may be filled in through use of (26) and (27) 
in conjunction with ( 16) and ( 18). These lead to lengthy and unrevealing 
expressions which will not be recorded here. Instead, the complete 
unloading solution will be given in the case of small scale plastic 
yielding (w'•U)(~a), a case in which it has been shown that the stress 
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and displacement fields are functionally identical for all problems and 
that the influence of loads and geometry is sensed only through the 
elastic stress intensity factor, Ke· Instead of proceeding to this case 
as a limit of the two unloading solutions considered above, the limiting 
loading solutions already derived for the case of small scale yielding 
will be used directly. 

Suppose that the cracked body is loaded so that the elastic stress 
intensity factor is Ke. Then tO (here assumed « a) is given by ( 12), 
the stress function by (17), and displacements by (20), which are the 
special forms of (22), (23), and (24) appropriate in the present case. 
Now suppose the loads are decreased so that -the stress intensity factor 
decreases by .1Ke. Then the zone of reversed plastic deformation (.Al 1 , is 
by (25) 

w' = J!.. 
jl. 

• ( recall w .. JL ~ ) • 
1? 6'~ 

Equation (26) for the stress function after unloading becomes 

(30) 

(31) 

and the final displacements of the material in the reversed zone are, 
by (27), 

V(XJ = (~z.,.tJcr--.., ft.) ( 1-X/w)J{ -.1.w1 ( t-Vw )],{ 
21T{!j-

-ix'lo { /-I(I-X/t.J)j{)txl" { f+(t-K/c.ljKJ'l (32) 
'J 1- (1-K/b,J)f:. 'J 1-(t-X/w'~ J 

The final displacement at the crack tip x = 0 is 

v. - (?.,.f) Q,., ( . ./) 
o- Z1T<?r w-~IN = (11-tl) {'-" - J_ (4t.- ) .. ] 

/6 C,~, f1~ ... ne J 
(33) 

where (30) has been used. 

If' the cracked body is completely unloaded so that .toKe = Ke, the 
·reversed plastic zone (30) is seen to be one-quarter of the original 

296 

Plastic Yielding at a. Crack Tip 

~~tic zone and the strip dis placement (33) at the crack tip is seen to 
one-half of the displacement before removal of the load. Equations 

29, 30, and 33) further i ndicate that the reversed plastic zone and 
~~ in plastic deformation depend only on t he decrease in load, being 
tnd.ependent of t he original l oad l evel. If unloading is followed by a 
rtloadi ng whi ch brings the load back t o its original l evel, it is easily 
11hown t hat t he ~e lution i s identical to t he solution before unloading. 
1'hul'l during a cyclic l oadi ng the model predicts a cyclic deformation in 
tho reversed pl as tic zone dependent only on the amplit ude of load fluc
tuation and independent of the mean l oad. 

Remarks above have some relevance t o experimental studi es of plastic 
dtformation near a crack tip such as (17, 18), where cracked specimens 
1r studied after unloading, as the present results indicate that unloading 
~kedly alters the s t a te of stress and deformat i on. Further, it appears 
1hat an unloading solution given in (171 for the finite crack in a tensile 
f1&ld is incorrect, leading to results at variance with (28-2) and (29-2) • 

~~rnparison 111i th an Exact Solution 

Some idea of the adequacy of the rigid-plastic s trip model may be 
-"' 4b tained by comparison with an exact elastic-plastic solution. Such i s 

available from the work of McClintock (1) for the case of longitudinal shear 
' i n which the deformation consists of warping displacements only in the z 
dir ection (perpendicular to the crack x,y plane), and the only non-zero 
!Jtresses are the shears Txz• Tyz· Such anti-plane problems are solved 
~~ an analytic function H(z) where shear stresses and warping displace
ments are given in elastic material by 

(34) 

Consider a semi-infinite crack along the negative x axis with tip at 
the or1gin, and for which the elastic solution is 

(35) 

where Kw is the. stress intensity factor for warping di splacements. The 
exact elas tic-plastic solution of this problem has a circular yield zone 
of diameter w with center at x = (.>)/ 2. Where~ is the yield stress, the 
solution is 

lrz: = 0 , Ct;z = '[".., in flastic z.one / z- ~ J ( ~ (36) 
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I 

H (Z} Y..,(if (z- ':: )-~ in e/dsf/c zone / z- ~~ "7 ";_ 

with 

(37) 

Postulating a rigid-plastic strip model for this case, the solution may 
be shown to be 

(38) 

with 

W= :II....~ 
~ T~ 

(39) 

Solving for the maximum displacement w0 at the crack tip from (34), for 
the exact solution (the displacement field actually has a discontinuous 
jump of 2v0 at the crack tip in the exact solution!) 

(40) 

and for the solution of the rigid-plastic strip model 

(41) 

Comparing (37) with (39) and (40) with (41 ), it is seen that the rigid
plastic strip model predicts a plastic zone about 20% too large and a 
maximum crack tip displacement about 2~ too small. The relatively 
close agreement between the exact solution and the results of a plastic 
strip analysis suggests that artifically confining the zone of plastic 
deformation (by requirirtgJ in the model, that plastic effects take place 
only in the rigid-plastic strip of material ahead of the crack) does not 
introduce an appreciable error in the prediction of gross features of the 
deformation, such as, for example, the plastic zone size and tip dis
placement. This accuracy of the strip model is further clarified by the 
longitudinal shear solution of (19], and by the experimental results of 
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l>\J.8dale ( 8 J and Hahn and Rosenfield ( 17) in teats of plates with slits 
under tensile loadings. 

Fracture and Fatigue 

The strip model does not yield enough information on the details of 
plastic yielding to permit the absolute prediction of fracture strengths 
of cracked bodies in terms of material constants and geometric dimensions. 
llowever, the model may be utilized in a semi-empirical method to predict 
fracture criteria from a limited amount of experimental data. The 
solutions presented earlier for plastic zone size (12), stress function 
(17), and strip displacements (20,21) indicate that when the plastic zone 
nize, (.(1 1 is negligible compared to crack length, a, the stress and defor
mation near the crack tip depend on applied loadings and the geometric 
configuration only through the elastic stress intensity factor, Ke· 
Thus, in the case of small scale yielding, one expects fracture to occur 
when Ke reaches a critical value in agreement with the Griffith-Irwin 
criteria. Let ~ be this critical stress intensity factor at fracture, 
as obtained from some experiment on a cracked body for which the plastic 
zone size at fracture is negligible in comparison to geometric dimensions. 
The corresponding plastic zone size,oof, is from (12) 

and crack tip displacement, v5, is from (21) 

f_ v., -

(42) 

(43) 

For subsequent work it will be convenient to viewWf• the plastic zone 
size at failure in a small scale yielding fracture experiment, as a 
characteristic length defined by (42) for a given material, temperature 
of test, and plate thickness. It will be seen, then, that fracture 
criteria depend on the ratio of crack length to this characteristic 
length. 

The choice of a fracture criteria when yielding is not on a small 
scale is somewhat arbitrary in the absence of detailed features of the 
pl9Stic deformation. However, it is clear that a criterion should be 
based on parameters describing local behavior in the immediate vicinity 
of the crack tip where fracture initiates. It is then reasonable to 
assume fracture occurs when the maximum strip displacement, v0 , at the 
crack tip reaches a critical value, v£, as given by (43), since v0 gives 
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a rneasure of the deformation near the crack tip and may be expected to 
reflect the influence of applied loadings and geometry in an essentially 
correct way. Fracture criteria are derived below by setting v

0 
= ~ for 

the cases treated earlier of wedge forces per unit thickness P opening a 
semi-infinite crack at distance a from the tip and of tensile stresses~ 
opening a finite crack of length 2a. Equating (19-1) and (19-2) to (43) 
and cancelling the common coefficient, one obtains 

(44-1) 

(44-2) 

respectively, for the two cases.. Using equations ( 15) to express 
dependence on the applied loadings, after some rearrangement equations 
(44) yield for the respective fracture l oads Pf and ~f 

~ = }tc t+<iPI /( ~:t1/Ju -lj(t +lj{(~f0:~) 
+(I+(~/(-/:;;;-/)~}). 

""""J 

§2 -..:. t-3_, t ~xr( _ ~)'1 
<f',., 7T <l ') 

(45-1) 

(45-2) 

Equation (45-1) may not be solved explicitly but gives an implicit 

pl' 
relation between the dimensionless wedge loading at fracture, ~ , 

and the dimensionless crack length, uJ; . 
The Griffith-Irwin fracture theory predicts failure when the 

elastic stress intensity factor reaches the criti cal value K~. Taking 

the appropriate expressions for Ke from (14 ) , this criterion becomes 

= tr! (46-1) 
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(46-2) 

Comparison with (45) is facilitated by replacing K; through (42) which 
defines Wf· There results 

(47-1) 

(47-2) 

for the corresponding Griffith-Irwin fracture criteria. 

A comparison of the variation of fracture stress, ~ f• with half 
orack length, a, as predicted by the rigid-plastic strip model (45-2) 
and by the Griffi th-Irwin criteria (47-2) is made in figure 10, which 
clearly points out the agreement between the two criteria for small 
scale yielding (if<~a). Numerical calculations indicated that the 
Griffith-Irwin fracture stress exceeded the strip model fracture stress 
by 1% when a = 201.if, 5% when a = 3. 7li.f, 10% when a = 1.Stq., 2o% when a = 
0.~, and 4o% when a = 0.~. It is noted that the strip model predicts 
fracture at ~=On; as a 7 0 which corresponds to yielding of the entire 
rigid-plastic strip. 

Fracture criteria given here may be expected to be reliable under 
plane stress conditions for which the yield condition i s a realistic 
one and experimental evidence (8, 17 J confirms the ability of the model in 
pr edicting gross features of the yielding behavior. It is noted that 
the solutions presented for the strip model are independent of the strip 
t hickness in they direction. Indications from (17) are that by identi 
f ying this height with plate thickness t so that the average plastic 
strain is 2vo/t and supposing fracture to occur when this average strain 
r eaches a value characteristic of fracture in a tensile test, plane stress 
fracture strengths and their variation with plate thickness may be pre
dicted with rea~onable accuracy. 

Failure criteria similar to equations (45) may be obtained for other 
crack configurations by solving for the crack tip displacement, v0 , of 
the corresponding rigid-plastic strip model and equating it to~ of (43). 
Of particular interest would be fracture criteria for edge cracks, cracks 
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in finite sheets, and cracks emanating from cut-outs. Generalizations 
of the strip model may also lead to useful results. Essentially, the 
model allows the type of non-elastic material behavior of interest at the 
crack tip (in the present case, plastic yielding) to occur in a small 
artificially confined zone (the strip) ahead of the tip. Mathematical 
complexities are reduced since the non-elastic behavior enters the analysis 
only through boundary conditions imposed on the elastic regions bounding the 
strip, in which such behaviors as workhardening and strain rate sensitivity 
may be allowed. 

Solutions of the strip model for unloading and repetitive loadings 
have implications for fatigue crack propagation. The general solution 
of (25) and (27) for unloading indicates that the zone of reversed plastic 
yielding and change in strip deformation depend only on the decrement in 
applied load, and not on the load level before unloading. Thus, under a 
cyclic loading, the strip model predicts a cyclic plastic deformation near 
the crack tip which depends only on the amplitude of load fluctuation and 
not on the mean level about which the load is cycled. Associating the growth 
of a fatigue crack with this cyclic deformation, one expects the crack 
propagation rate to depend primarily on the amplitude of load fluctuation and 
to be comparatively insensitive to the mean load level. This conclusion 
is supported by experimental result s cited in (5,6) and other references 
therein. 

When the zone of reversed deformation is small compared to crack length 
(LJ <:.<.a) the unloading solutions of (30), (32), and (33) are valid, and it 
is seen that the cyclic plastic deformation under a fatigue loading depends 
only on the amplitude of variation, AKe, in the elastic stress intensity 
factor. Thus, for small . scale reverse yielding, the model suggests that 
crack propagation rates depend on the geometrical configuration of the 
cracked body and fluctuations in applied loadings only through the variation 
in the elastic stress intensity factor. This is the conclusion reached by 
Paris (5,6} and verified experimentally by a wide range of data, from 
several investigators, for different metals and different cyclic loading 
conditions, including i n (6] some data obtained under random loadings. A 
fatigue crack growth law in which the crack extension per load cycle is 
proportional to (4Ke)4 is derived in (10) from the unloading solution for 
the strip model under the assumption that failure by fatigue occurs at a 
material point ahead of the crack when the total of plastic deformations at 
that point (as measured by the sum of absolute values of the reversing strip 
displacements) reaches a critical value. This is in agreement with the 
power law proposed in (5) as the best fit to the entire range of available 
data on crack propagation. Corrections for cases where the scale of 
reverse yielding is not small may be made by using equations such as (28) 
and (29) to describe the cyclic deformation, in lieu of the small scale 
yielding equations (30) and (33). 

Certain important aspects (in addition to three dimensional effects) of 
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the fracture and fatigue of cracked bodies, while presumably due to plastic 
yielding at a crack tip, seem not to be predictable through an analysis of 
the strip model. One of these is the phenomena of slow growth (20), whereby 
catastrophic fracture does not occur all at once, but rather the crack grows 
gradually after a certain load level is exceeded until, under increasing 
load, a critical point is reached at which catastrophic fracture ensues. 
An explanation proposed in (20), notes that plastic materials have history 
sensitive deformation laws, implying that the distribution of plastic yield
i ng due to stressing the tip region of a stationary crack by increasing 
applied loadings is different from the distribution of yielding caused by 
extending the crack under stationary applied loads. Such a distinction 
does not occur in the s trip model. Another phenomena is the delay effect 
(21) which occur9 in the course of fatigue crack propagation under cyclic 
loading when a very large overload is applied; the result of the overload 
is to effectively stop the crack growth for a large number of load cycles , 
Presumably, an elas tic "shakedown" occurs through severe blunting of the 
crack tip by large plastic deformations of the overload. The strip model, 
on the other hand, predicts no change in the pattern of reversing plastic 
deformation. 
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A-18 AN EXAMINATION OF THE FRACTURE MECHANICS ENERGY BALANCE 

FROM THE POINT OF VIEW OF CONTINUUM MECHANICS 

James R. Rice* 

ABSTRACT 

The Griffith energy balance for fracture with extensions to in
elastic materials considers a cracked body as a linear elastic conti
nuum in which the potential energy released by a crack extension 
s hould balance the surface energy plus the energy dissipated by in
elastic deformation at the fracture load. With progress in continuum 
mechan ics analyses of crack tip stress f ields for material models 
other than purely linear elastic behavior (non-linear elastic, elastic 
-plastic, visco-elastic, visco - plastic, etc . ) the possibility ari
ses that deviations from linear elastic behavior may form a predictable 
part of the mechanics rather than an effect treatable only by inclusion 
of a modified surface energy term . This paper presents an examination 
and discussion of the fracture mechanics energy balance from this more 
general viewpoint, attempting to seek those conclusions which follow 
from theorems and methods of continuum mechanics and broad classifica
tions of continua, rather than from specific and largely unavailable 
inelastic deformation analyses . 

A Griffith type fracture criterion is employed in that it is assumed 
for crack extension tha t the work of applied forces must equal the sum 
of the strain energy change, kinetic energy change, energy dissipated 
by inelastic deformation, and surface energy. All energy variations 
except the surface energy are assumed estimated from a continuum so
lution for an advancing cra ck satisfying the equations of continuum 
mechanics and constitutive relations appropriate to the material, while 
the surface energy is assumed independently known from microstructural 
considerations. Under this Griffith type assumption it is shown, ir
respective of the particular constitutive relation employed, that the 
fracture criterion is determined solely by local stresses and deforma
tions near the crack tip (or mathematically, by crack tip singularities 
in continuum solutions), and that an overall Griffith energy balance is 
equivalent to setting the work done in stress removal from the new crack 
surface as estimated by the continuum analysis equal to the independent 
work estimate for bond breakage in the form of surface energy. While 
all conclusions of the paper tacitly assume the validity of a Griffith 
type fracture criterion, the inadequacy of such a criterion for preva
lent highly ductile fracture mechanisms such as void coalescence by 
intense plastic flow (rather than fracture by direct bond separation) 
is emphasized. 

*Assistant Professor of Engineering, Brown University, Providence, R.I., 
U.S.A. 
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