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Abstract
515

This paper deals with the theoretical prediction of some
statistical characteristics of continuous stationary random
loadings which are relevant to studies of fatigue. Primary
emphasis is given to the determination of the distribution and
average height of load rises and falls. A summary 1s also
given of some other statistical information useful in fatigue
analysis. Particular examples are worked out for Gausslan
processes with ideallized spectra and experimental data on

fatigue crack propagation under random loadings is cited.
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Introduction

The fluctuating stress responsible for fatigue failure of
mechanical systems is often in the form of a cont;nuous
stationary random process., It is therefore important to have
availlable techniques for predicting statistical averages and
distributions of certain random loading characteristics relevant

to fatigue. This is the subject of the work to follow.

We shall devote most of our attention here to statistical
aspects of the height of rise and fall in a continuous random
loading. By the height of rise we mean the increment h (as
depicted in figure 1) in a random function as it passes from a
minimum to the next maximum, the height of fall being similarly
defined as the decrement in passing from a maximum to the next
minimum. Recent work on crack growth rates [1] and fatigue
lives [2] under random loading has shown that the primary
responsibility for fatigue damage lies with the rise and fall
in the loadings rather than other statistical quantities such
as the mean load level or distribution of maxima and level
crossings, A study of the rise and fall problem in consliderably
greater detail than-to be given here has recently been

reported by two of the present writers in [3].

In addition to the material on rises and falls, we shall

also summarize some results in [4] relevant to fatigue analysis



of random loadings., Numerical examples will be given for the
case of Gaussian processes and experimental data cited on crack

propagation under random loadings.

Throughout the work to follow we shall deal with statlonary
processes with zero mean values and with continuous first and
second defivatives. Frequent use will be made of the correlation
function R(1) of such a process, x(t). This function is defined

as

R(1) = E{x(t) x(’c+‘r)} , (1)

where E ioool denotes the expected (or average) value of the
quantity in §.,°} . It is clear that R(o) is the variance (or
square of the standard deviation) for the process and that the
average value of the product of the J th gerivative at time t and

k th gerivative at time t+t is
-3 (1 - 8 gx(‘”mx‘k)(m)} o (2)

Such processes can alternately be characterized by a power
spectral density F(w) reflecting the frequency content of the
random process and related to R(Tt) by the Weiner-Khinchin

relations

n
>
© 8

R(T) F(w) cos wt dw (3)

Sm R(1) cos wt drt . (4)

o

F(w)
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In what follows results will always be given first in general
terms and then specialized to the technically important case
of Gausslian processes. For a stationary Gaussian process all
statistical means and distributions depend only on R(t) or

alternately F(uw),



Level Crossings and Extrema

A number of results in the analysis of stationary random
processes are reported in [4]. In this section we will summarize
some results of [4] pertinent to fatigue analysls dealing with
the expected number of level crossings and extrema per unit time
in a random loading, our aim being to develop expressions for use
in the following sections and to provide a brief summary for

readers unaquainted with this area.

Consider first the expected number of crossings of x(t) = a
per unit time, Na - Choosing an infinitessimal time interval dt
at some arbitrary point on the time axis, Ncl dt may be
interpreted as the probability of an o crossing in time dt., Now
there will be an o crossing 1if, (a),a-|£(t)|dt<x(t)<a and x(t)>o
or, (b), a<x(t)<a+|§(t)|dt and ;(t)<o° Letting g :(u,v) be the
Joint probability density of x(t) and x(t) (such that du dv Bxx(u,v)
is the probability that u<x(t)<u+du and v<x(t)<v+dv), the

probability of an o crossing will be

® 0 o pat |v |at
N dt =£ S' gxx(u,v)du dv +f r Byx(Usv)du dv
a—]V|dt ~w O
(5)
Performing the integration in u and recognizing that dt is

infinitesimal,

o+ o
N, =S_ Ivlgxi(a,v) dv, (6)
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Writing gx;(u,v) = gilx(v)|x=u) gx(u) where g;lx(v|x=u) is the
conditional probability density of x(t) glven that x(t) = u and
gx(u) is the probability density of x(t),

4o
Na=sx(a)g_|vlg;‘x(le=a)dv = gx(a)E{lil\x=d} . (7)

In the above expression E{Iil‘x d}is the\conditional expected
value of |[x(t)| given that x(t) = a, or the average of [x(t)]| at
all points where x(t) has the value a, Letting a=0, we obtain
the expected number No of mean crossings per unit time:

N, =S : (vl gxi(o,v)dv = gx(o) E{lil\x = o} (8)

-

The expected number of extrema per unit time, N is simply

e?
the expected number of zeros per unit time of the process x(t).
Thus the determination of N, 1s identical to that of N, except
that now x replaces x and X replaces X, Letting giy(v,w) be the
joint density of %(t) and X(t), we write
+w
Ne =g Iw[gig(o,w)dw = g;(o)E{l?[li = é; (9)

e OO

The procedure can be continued to obtain the expected number of
inflection points per unit time (zero crossings of %) and so on.
In general, the expected number of zeros per unit time of the

k&l derivative x(k)(t) is
N(x(k)zo\ = gx(k)(o) E{)x(k+l)‘ ‘ x(k)=O} o (10)

For processes (such as Gaussian processes) where any two
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successive derivatives x(k)(t) and x(k+l)(t) are independent

random variables, (21) and (23) take the simpler forms

X

No= g () E (XY Ny =g E{¥IY . an

In the Gaussian case the probability densities of x(t),

x(t), and X(t) are

u

() = == -
8y u) = JE;ﬁTET‘ exp {— 1/2 (o) z

1

2
v
By(V) = N-27R" (o) exp i" 172 T o) }

1 2

“ . — L A (12)
gx(w) 27R(B) (o) EXP {- 1/2 r(4) (o) }

The terms R(o), -R"(o0), and R(u)(o) are obtained by differentiation
of the correlation function defined in (1) and (3), and represent
by (2) the variances of x(t), x(t), and %(t) respectively. The

expected values appearing in (1ll1) are
B {1%1}

+oo
E{I¥1}= S [wlgp(w)aw

°

X

4o 2 —
g lvig; (v)av r\l- = R"(0)

Qgﬂ“w> . (13)

Thus for Gaussian process, equations (7), (8), (9), and by an

obvious extension, (10) become after noting the simpler form of



(11) appropriate in this case

1 -R"(0) al
=-,,’____ —_— ]
Na p 0) exp{ 1/2 o) , (14)

i V_Ril(o)
No =7 N7R(o) (15)
Ne = q -R"(0) ’ (16)
(%) 1| g2k (o
N (x = 0 = Al- . 17)
( ) Ul R(2k)(o) (

These are readily converted to expressions in terms of the spectral

density by noting from (3) that

©

R(o) = {  F(w) aw
o)
# >,
-R(o0) = w? F(w) dw
o)
(4) ®
R (o) = g w* F(w) da (18)
o)
The expected number of crossings of x(t) = a per unit time

as given by (1ll4) has been used to construct approximate solutions
for the probability distribution of the operating time of a
randomly loaded system before the occurence of an extreme load
level which would cause failure. Such approximate solutions are
given in [5] and [6] (which should be read in conjunction with

the comment of [7]),
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Average Rise and Fall Height

The average height of rise and fall 1s easily determined
(as will be seen later, the determination of the distribution of
rise and fall heights 1s a very difficult problem) and is a simple
parameter describing the fatigue-damaging effect of a random

loading. The average rise and fall per unit time 1s the expected

x|} ; dividing by the

value of the aboslute value of x(t), E{
expected number of extrema per unit time, Ne’ yields the

following expression for the average height:

= El|x
h N, (19)

It was shown in the last section that Ne is related to the

conditional expectation of |§| given that % = o by
Ny = g;(o)E{IXI' k= o}, (8)
where g;(v) is the probability density of x(t).

The average height of rise and fall may be related to the
ratio of N. and the expected number of zero crossings per unit

time, N in the special case of processes for which x(t) and

O’
i(t) are independent random variables. This is the case for at
least one type of processes, namely Gaussian processes, The

expected number of zero crossings (or mean level crossings) per

unit time is
N, = gx(0) E {|&] | x = o} (9)

-9 -



where g_(u) 1s the probability density of x(t). If x(t) and x(t)

are independent, E{li||x=°1 = Eg|k|l and, using (8), (19) becomes

h=glo) W (20)

This expression provides a very convenlent experimental method
for determing h; one need only count the number of zero crossings
and extrema in a sufficiently large time interval and an actual
measurement of rise and fall heights 1is unnecessary. Since Ne

must always exceed N , equation (8) gives as an upper bound on h

1
gx(0)

=l

(21)

For the case of Gaussian processes the values of E ilil},

Ngs Ny, and g,(o) are given by (13), (16), (15), and (12)

e?

respectively. Thus equations (19), (20), and (21) take the form

B = = R"(0) '\] (u)( ) (22)
- _Q fi No

= 42ﬂR(o 'N > = n (23)
R € 21R(0)’ or E_— N2r (24)

The alternate forms of the last two expressions follow from
noting that R(o) = 02, where ¢ is the root mean square value of
the process x(t). The average rise and fall height of (22)
above may be expressed in terms of the second and fourth moments

of the power spectrum through equations (18).,
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Distribution of Load Maxima and Minima

A statistical distribution of considerable interest in fatlgue
and fracture analysis is the distribution of load levels at which
maxima or minima occur. We give below a slight modification of
results in [4] pertinent to this problem. Let fy(a) da be the
probability that, given a maximum at t, its value falls in the
interval a<x(t)<a+da. This is expressible in terms of the triple
Joint probability density gyyx(u,v,w) for x(t), i(t), and X(t).

The probability of having a maximum in an infinitesimal time dt
with a value between o and o+da 1is by the law of conditional

probabilities

N, o plwldt pa+de
fy(e)da ) dt S_m‘g g gxk§(u,v,w)du dv dw, (25)

a
since such an event will occur if a<x(t)<a+da, o<i(t)<|§(t)|dt,

(X ]
and x(t)<o. Thus

o)
fyle) = %; g_wlwl gxi;(a,o,w)dw i (26)

Simiiarly, the probability density fm(a) that, given a minimum at

t, its value falls in the interval a<x(t)<a+da 1s

K | W] gx;{;(a,o,w)dw . (27)
o)

2
fmle) = w7

The average number of maxima and minima per unit time with values

between a and a+da are respectively

- 11 -



Ng N

= fyla)de , == fp(a)de . (28)

In the Gaussian case x(t) 1s independent of x(t) and %(t) .
Thus gxi§(u,v,w) = gy (v) gxy(u,w), where gy(v) 1s given in (12)

and

gx§(u,w)=éwﬁi,exp[- %E iR(u)(o)u2-2R"(o)uw+R(o)w2} 1, (29)

where

k = R(o) R(H (o) - [R"(0)} 2 . (30)

Carrying out the integration in (26),

U aeay) oo (omsy
fM(G) = 2R(O) R (O)R(O) exp <- 2R(O)> [ag er*‘( 2kR(o)>}

_ Nexr(o) (__ iR"(o)aZ?')]
M R"(0) P 2kR(0) .

P -

(31)

For large values of a, the error function approaches unity
(R"(0) being negative) and dominates the exponential term. Thus,

whena is large

-R"(0)a a?
f = - . 32
ute) R(o);iR(o)R(u)(o)|exp { 2R(0) } (3%)

The density of minimum values is given, in the Gaussian case

as in the case of any symmetrical process, by

£.(a) = fy(-a) (33)

- 12 -



The distribution of maxima in a randomly varying stress at
the tip of a growing fatigue crack has been employed in [8] for a

study of structural failure through crack propagation.

In deriving expressions for Na and Ne in an earlier section
we have 1lnterpreted Nadt and N.dt as representing, respectively,
the probability of ana crossing and the probability of an ‘
extremum of x(t) in the time interval t tp t+dt. The expression
for fM(a) derived in this section was interpreted as the
probability density of x(t), given that a maximum occured at time t.
With these interpretations, the results of (6), (9), and (26) for

and fy(a), respectively, clearly hold true even when

Na’ Ne’

x(t) 1s a non-stationary process.

- 13 -



Rise and Fall Distribution

The exact determination of the distribution of rises and falls
in a continuous random process is a very difficult problem,
although the average rise and fall height 1s relatively easy to
compute. We shall give a brief summary of an approxlmate
technique below, referring the reader to [3] for a more general
formulation with considerably more attention paid to details of

derivations and analysis of the approximations introduced.

Assume the random process x(t) under consideration to have |
continuous second derivatives and let P(h,t)dh dt be the
probability that, given a minimum in x(t) at t=o, the next
maximum occurs in the time interval r<t<t+dr and that

h<x(t)-x(0) <h+dh (see fig. 1). Then the rise and fall density is
P(h) =§ P(h,t)dr . (34)
)

As a first step in the determination of P(h,t) we write

P(h,t) = £ (h[t)p (7) , (35)
: +

where f_(h|t) is the conditional density of h given that the next
maximum occurs at t = t and po(r) is the density of the time
interval between successive extrema. These two functions will

be approximated in the work to follow, our aim being to replace

them by functions which can be calculated.

- 14 -



Taking f,(h|t) first, we approximate it by
fo(hlt) = £(hlz) (36)

where f(h|1) dh is the probability, given a minimum in x(t) at
t=0 and a maximum (not necessarily the first) at t=t, that
h<x(t)- x(o)<h+dh. The approximation becomes exact for small =
since the probability of having another maximum 1n o<t<t is
correspondingly small., For large values of 1 there will be a
discrepancy, but this discrepancy will be unimportant since p,(rt)
is small for large t. The approximation for po(r) (which represents
the zero crossing density for x(t)) is obtained after expressing
it first in the form derived in [3]
T

Po(T)=p(t]o<t<t) exp g—gop(s|o<t<s) ds}, (37)
where p(t|o<t<t) dr is the probability of a maximum in
t<t<t+dtr , given a minimum at t=o0 and no other maxima in the

internal o<t<t. We now approximate p(t|o<t<t) by
p(t|o<t<t) = p(1), (38)

where p(t)dr 1s the probability, given a minimum at t=o, that a

maximum occurs in t<t<t+dt. Thus (37) becomes

P (1) = p(T) exp { - g: p(s) ds} : (39)

- 15 -



For small 1 the exponential term 1s approximately unity and (39)
yields the type of approximation given in [4] for the zero crossing
density. This 1is a good approximation for small v , since the
probabllity of other maxima in o<t<t 1is also small. As t+*=, the
right-hand member in (39) approaches zero exponentially, since

p(T) approaches a constant representing the expected number of
maxima per unit time. Little can be sald about the closeness of
the approximation when t 1s not small, but we note that integrating
the right-hand member of (39) in t from zero to infinity yields

unity.

}

We note that the approximation obtained for P(h,t) through the
use of equations (35), (36), and (39) involves the expression
f(hlt) p(t). By the law of conditional probability this expression
1s equal to f(h,t) where f(h,t) dh dtv is the probability, given a
minimum at t=o, that a maximum (not necessarily the first) occurs
in t<t<t+dt and that h<x(1)-x(o)<h+dh. Thus, equation (34) for the

rise and fall density becomes
o T
P(h) = S f(h,t) exp i- g p(s)dsl dt (40)
o o}

The functions f(h,t) and p(t) appearing in (51) are expressible in
terms of joint density functions for the process x(t) and its
derivatives. The results follow from essentially the same sort

of approach which led to (6) and (26). Letting N, be the expected
number of extrema per unit time,

2 o
p(r) = N g % lww'|g(o,w;0,w';T)dw dw' (41)
-0 fo)
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where g(v,w; v',w';1) is the joint density of i(o), ;(o),i(r),
and x(t) represented by v,w,v', and w' respectively, and

0 o 4+
f(h,1)= %;-g g g [ww!|g(u,o,wsuth,0,w';1)du dw dw' (42)

where g(u,v,w;u',v',w';t) is the joint density of x(o), %(o),

%(0), x(7), x(1), and X(1).

For applications to the case of stationary Gaussian processes
the multi-dimensional Gaussian distribution [4] must be used,

The expression (41) for p(t) becomes

1 (=R"(o) Q1/2 5 172
p(t) = . ggrﬂyzgy% gJ -K }

1

[{R"(O)‘i2 - {R"(T)iz]—:b'z {1+H COt- (-H)} » (43)

where

7= 8P @R R ? - m0}?] + rrco) {10} 2
k=2 o[ - mr}?] - ro (2P0}

H = K {J2 - K2} mi/2 (44)

-1
and o € cot (=H)&m., The expression for f(h,t) cannot be expressed

in closed form, but may be reduced (see [3])to a single integral

in a form convenient for numerical evaluation:

- 17 -




n/b sin 20 (1422
o (1l+c sin 20)2

f(h,t) = 1/2 A exp (-B h?) S
(L45)
+ fr z(§+z2) exp (z2) {1+ ev§(2)} 1 e

where

Dh(sin 8 + cos 8)
f{l+'C sin 20 '

z = z(h,t,8) =

- (=B'() 11/2 1
g R(4) (o) T3/2 q%JIMi(sll+slu)'

B = 1/4 (sll“slu) ,

536- °33 +9
C=-—=—7 — »

] S
D = 13-°16 ’

2N2q

s 8 2
PR e S (o)
11%s14

and where |M| is the determinant of the matrix M and 43 is the
th row and jEE column member of the inverse matrix of M, M being

the six by six correlation matrix

- 18 -



r—R(o) o R" (o) R( 1) R'(1) R"(1)

0 ~R"(0) ° -R'(1)  -R"(1)  =RO3) ()
R"(0) o Ry rin r 7MW
e R(1) -R'(x) R" (1) R(o) o R"(0) (47)
R' (1) -r"(1)  R3() o _R"(0) o
ri(n) R0 R R0 o R (o)
e —

It is seen that, for Gausslan processes, the evaluation of p(r)
and f(h,t) required in the approximate expression (40) of the
rise and fall density presupposes a knowledge of the correlation
function R(1) and of its first four derivatives. According to
[9] we are assured that these exist for any process for which
second derivatives exist. In terms of the spectral density

this means that F(w) must be bounded by an expression of the form
c/wi3tefor large w, where c¢c is a constant and ¢ is any positive

number.

More particular information on the rise and fall distribution,
such as the conditional density of rises given a minimum at some
fixed level, can also be obtained through modifications (see [3])

of the techniques given above.

It is appropriate to mention two other attempts at the
determination of the rise and fall distribution in references
[10] and [11]. Schjelderup [10] gives a treatment of the rise

and fall problem for some special limiting cases of Gaussian

- 19 -



processes with power spectra composed of sharp peaks at very
widely separated frequencies., His method falls to take account
of the dependence of a maximum on the last minimum and is in
general not capable of extension to other cases. Kowalewskl
[11] gives, without derivation or reference, an equation for the
rise and fall distribution iIn a Gaussian process. That the
equation 1s incorrect can easlly be seen by computing the

average rise and fall height; the result differs considerably from

h as given by (22) or (23), which has been checked for validity

several times by measuring and averaging rise and fall heilghts

in experimental records of random processes.,

- 20 -



Particular Examples - Gaussian Processes With Idealized Spectra

Examples are given in this section for stationary Gaussian

processes with idealized power spectra of the form

2
—
Flw) = (l_B)wc for Bmc<w<wc (48)
o otherwise

where o0g&g<l. Here w, is an upper cut-off frequency and Bu, a lower
cut-off frequency. When g=o the spectrum is that of an ideal
'low-pass' filter and when g 1s close to unity the spectrum is
'narrow band'. Since Xﬁ F(w)dw = 02, ¢ 1s the root mean square
value of x(t). It is cgnvenient to use a dimensionless time

¢ = w,t and-to deal with the process y(¢) = X(t)/c which is
dimensionless with unity root mean square. Then the correlation

function for y(¢) is, after an appropriate modification of (3),

R(¢) = E gy(w)y(ww)} = %282 F(w) cos('::,’—c §) dw (49)
or
1
R(¢) = ?;:g;; fsin ¢ = sin B¢}° (50)

For several applications discussed earlier one needs only know

certain derivatives at ¢ = o:

_a3 1-g5
R(o) =1 , R"(o) = - 1/3 T, R"(0) = 1/5 5= . (51)

- 2] -



Denoting by h a rise or fall in x(t), we find from (22)

the average rise and fall height of the process y(¢) is

107 1-83
3 N(-e)(1-8%) (52)

It is easily seen that for B8 = o (ideal low pass filter),

h = 456;V3 0 1.870 , whereas when 8+l (narrow band filter) the
average approaches h = 45?0 % 2,510 which 1s the upper bound given
by (24), The expected number of crossings of y(¢) = o/c (that is,
of x(t) = &), zero crossings, and extrema per unit of time ¢

(that is, per unit of w,t) are from (14), (15), and (16)

B (2
Noe =7 \3(1-8) ©*P (”2 02>

1 [ 1-e
o n 3(1-8)

respectively

1 [3(1-83)

Ne = 7 N 5(1-83)

(53)

Equations (52) and (53) illustrate a point of some interest
in the analysis of stationary processes. Suppose there are two
processes xl(t) and xz(t) with variances 012 and 022 , and that
the spectra Fl(w) and Fz(w) are similar in the sense that they
can be made to coincide by appropriate scaleing of the wand F

axes. If wl and w are characteristic frequencies such as a
2
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cut-off frequency or a center frequency, then the processes

t
xl(t)/cxl(wher'e ¢=w1t) and y2(¢) = x2( )/02 (where ¢=w2t)

y1(¢) =
have identical statistical distributions both in dimensionless

X
amplitude yi= i/oi and in dimensionless time ¢=wit.

The rise and fall density for y(¢) (that is, P(h/c0) ) may be
computed from the approximate formulation given in the last »
section, Considerable difficulties were met in performing
numerical computations on a digital computer due to the extreme
accuracy required in inverting the correlation matrix of (47) near
its singular point at t=0 and due to the extensive amount of
numerical integration. These are discussed at greater length in
[3]. Computations of the rise and fall density were made for
values of B8 equal to 0,.25,.50,&.75. Results for 8= o are shown in
figure 2 and for 8=0.75 in figure 3, Figure U4 is a combined plot
of computed results for all four cases. The dashed line in
figure 2 is a plot of experimental data collected by Leybold [12]
from measurements of approximately 53,000 rises and falls 1in a
digitally generated random function with an ideal low pass filter
power spectrum. The dashed line in figure 3 is a plot of the
Rayleigh distributed rise and fall density which would occur in an
extremely narrow band process consisting of a sine wave with an
amplitude varying negligibly as the process passes from a minimum
fo the next maximum. The amplitude R of such a process has the

density [4]

- 23 -



R R2
qa(R) = 5, &P (-1/2 —> o (54)

g2

Noting that h/c 2R/o and using the usual rules for tranformation

of stochastic variables, the limiting form of the rise and fall

density as the bandwidth is narrowed toward zero 1is
P(h/0) = 1/b(n/c)exp{- 1/8 (n/0)?} . (55)

This is the density plotted as a dashed line in fig. 3; it 1is
easily checked that it yields for an average rise and fall height
h = 270, which is the upper bound of (24). The comparison with
the case B=.T75 seems appropriate since the value of h is only
1.5% less than ﬁﬂn. Computed results for small h/o could not be

accurately obtained in this case and thus are not shown,

The agreement of predicted results with experimental data for
B=o and the limiting Rayleigh distribution for B=.75 indicates that
the approximate solution to the rise and fall problem 1is
satisfactory at least for large h. Since one 1s generally interested
in higher moments of h (see the next section), the results are
sufficient. The table below gives the first four moments of the

computed rise and fall density where the nfl moment is defined as

;H/cn = g (h/o)® P(h/¢) dh/c . (56)
(o]

The first line gives exact values of h/¢ as found from equation (52).
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moment B8=0 B=0.25 B =0.50 8 = 0.75

(h/0) exact 1.868 2,111 2.351 2,478
(h/06) computed 1.810 2,026 2,244 2,625
(hZ/02) computed 4,469 5,473 6,415 8,227
(h3/03) computed 13.112 17.484 21,491 31.139
(h*/c*) computed 43.573 63.110 81.297 132,856

Agréement between exact values of the average height and the
average as computed from the approximate rise and fall density 1s
generally good. The moments for g=0,75 can be compared with those
of the limiting form of the distribution as B approaches one. The
first four moments of the limiting expression given by (55) are,
respectively, 2.51, 8.00, 30.70, and 128.00. The lower moments of
h as computed for B8=0.75 seem too large, the reason being the
inaccurate results mentioned earlier for small values of h. This

apparently has less effect on the higher moments,
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Fatigue Crack Propagation Under Random Loadlngs

Experimental data on crack propagation under random loadings
are cited here to show the relation of rise and fall statistics to
the prediction of fatigue life. Recent work in [13,14,15,16] and
particularly in [1] and [17] has shown that the rate of propagation
‘of a fatigue crack in a plane sheet under cyclic loading depends
only on the variation 6f the crack tip stress intensity factor and
is otherwise independent of the method of loading, crack length, and
specimen goemetry. This 1s true when the scale of plastic yielding
.at the crack tip is small compared with other geometric dimensions
and is avery reasonable result since, when yielding does not alter
the stress state far from the crack, the stress intensity factor is
a single parameter describing the stress distribution near the crack
tip. It has been observed experimentally that the c¢rack growth per
load cycle depends primarily on the amplitude of the intensity
factor variation and is relatively insensitive to the mean load
level, Further, if one insists on fitting a power law type of
relationship to the data, the crack extension per load cyqle is
roughly proportional the fourth power of the amplitude éf stress
intensity factor variation. Some theoretical justification of

these results is given in [1] and [18].

On the basis of evidence on crack propagation under cyclic

loading it is not unreasonable to expect that, under random loading,
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the average crack extension per load peak should be approximately
proportional to the average value of the fourth power of the rise
and fall height in the stress intensity factor variation. This
ignores the effect of rise and fall height sequence, but neverthe-
less provides a useful starting point. For a crack of length 2a
‘in a large plate loaded with a stress s acting perpendicularly to
the crack line, the stress intensity factor k is [19] k = s N&%
Thus, if the stress s = s(t) is a statlonary random process with
an average fourth power of the rise and fall helght ;:s, the

corresponding fourth power rise and fall of the stress intensity

factor is

h* = h 5 a2 (57)

Our hypothesis then is that the crack extension per load peak
should depend only on the combination shown in equation (57) and,
thus, shoulé be otherwise relatively independent of the crack
length a, the mean value of s(t), and any other statistical
properties of the protess s(t). Citing experimental results

given in [1], we verify that the preceding statement 1s true.

Figures 5 and 6 show respectively samples of five different
stationary random stress processes and thé corresponding power
spectra. Processes A,B, and C were generated by Fuller [20] and
E by Leybold [12] (process E was used for the comparison of

predicted and experimental rise and fall densitles in figure 2).
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The densities of rise and fall heights, made dimensionless through
division by the standard deviation o, were determined by
measurements of rises and falls and are shown in figure 7. The
average fourth power rise and fall heights of the stresses

divided by the standard deviations, Hz over og , are 128 for A,

88 for B, 101 for C, 64 for D, and 40 for E. The stress processes
A,B, and C were applied to cracked plates of 7075 T6 aluminum alloy
by S. Smith of the Boeing Company who kindly reported his results
to the writers. The results are reduced to a plot of (;E)l/u from

(57) against the average crack extension per load peak d(2a)/dn in

figure 8.

The fact that data from three very distinctly different random
loadings fall essentlally into the same curve in figure 8 1s a
verification of the usefulness of rise and fall statistics and of
the stress intensity factor approach to crack propagation., It
should be cautioned that it appears that the crack propagation rate
under random loadings does not depend on EE in exactly the same
way as it does for cyclic loads. This point 1s illustrated by

figure 9 where growth rates under both cyclie and random loadings

are compared,
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Some Practical Considerations in Applying Rise and Fall Statistics

Basing predictions of fatigue life on averages of the rise and
fall helght can, in some cases, lead to substantially incorrect
results. As an exmaple, consider a random loading x(t) for which
a particular sample has the appearance of one of the samples
shown 1in figure 5, If a very high frequency oscillation with
extremely small amplitude 1s superimposed on the loading x(t),
one would expect the resultant loading to gilve essentially the
‘same fatigue 1life, But the distribution of rises and falls would
be markedly changed, for in place of a relatively large rise
and fall in x(t) one would now have several smaller rises and

falls.

A random process generated by applying white noise to a
lightly damped linear spring-mass-damper system affords an example
of thls phenomena and provides a useful means of illustrating what
can be done to eliminate this high frequency effect from the
analysis.

Let x(t) be the response satisfying
;{.(t) + ewg x(t) + wg x(t) = w(t) , (59)

where w(t) is white noise with a power spectral density equal to
a constant, K, for all frequencies. Then using standard methods in
the stochastic analysis of linear systems [9,21], the power

spectral density of the response x(t) is
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K 1
F(w) = w 2 W ° (60)
we? [1-(“_0)2] +€2('w_o')2

When ¢ 1s small (light damping) the spectrum has a ‘narrow band'

appearance with a large peak centered near w = w_, and thus a

e}
sample of x(t) might be expected to resemble a sinusoidal wave
with slowly varying amplitude and phase. The average rise and
fall height 1is, however, equal to zero. This 1s readily seen by
noting that from (22) h varies inversely with the square root of
R(u)(o). By (18), R(u)(o) is the fourth momenﬁ of the spectrum
F(w). But in the case under consideration F(w) approaches

K/w* for large w, Implying that the fourth moment 1is infinite and
thus the average height of rise is zero, The mathematical
idealization of white nolse cannot be realized physically; rather
than having a vanishing average helght in the actual case h would
be very small due to the high frequency content of F(w) which
causes rapld oscillations of small amplitude in x(t), even though

upon casual observation x(t) would appear to be quite regular

and typically 'narrow band' in its variation.

This difficulty 1s not insurmountable, and the use of some
Judgement can lead to meaningful results for the rise and fall
distribution. Suppose we consider a process x*(t) with a
spectrum defined as F(w) (as given in (60)) for w<w,, and defined

as zero for w>w,, Then x,(t) has a non-zero h if w, 1s finite.

- 30 -



The process x*(t) is simply the process x(t) with a high frequency
component, having variance of = %w F(w)dw, substracted out. If
we choose a value of w, slightly greater than Wy but at the same
time sufficiently large such that qf is negligible in c¢omparison
to the variance of x(t), we have effectively eliminated the
troublesome part of the process x(t) but retained its important
features with regard to fatigue analysis through consideration of

x*(t).

A similar method may be employed in other cases. Taking the
ratio N, /Ng (or equivalently from (23), h/ 2n¢) as a measure of
the degree of irregularity in a process, when this ratio is not an
appreciable fraction of unity the exact distribution of rises and’
falls may have little relevance to the load variations important
in fatigue, and an alteration of the type performed above may be

necessary to yileld useful results,
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