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The in-plane extension of two dissimilar materials with cracks or fault lines along
their common interface is considered. A method is offered for solving such problems by
the application of complex variables integrated with the eigenfunction-expansion tech-
nique presented in an earlier paper.
a single complex potential resulting in a marked economy of effort as contrasted with the

The solution to any problem is resolved to finding

more laborious conventional methods which have not yielded satisfactory results. Bound-
ary problems are formulated and solutions are given in closed form. The results of
these evaluations also give stress-intensity factors (which determine the onset of rapid
fracture in the theory of Griffith-Irwin) for plane problems.

A PROBLEM of considerable practical importance is
that of two semi-infinite elastic bodies with different elastic
properties joined along straight-line segments. The problem
represents idealizations of two dissimilar metallic materials
welded together with flaws or cracks developed along the original
weld line owing to faulty joining techniques. The bonding ma-
terials also may be metallic to nonmetallic.

Although a great deal of progress has been made in solving
elasticity problems involving lines of discontinuities, mathemati-
cal formulation of the problem of cracks between the bonding
surfaces of two different materials remains inadequately treated.
Recently, several authors have attempted to solve the problem
by methods such as the eigenfunction-expansion approach [1, 2],
the Hilbert problem [3], and by techniques using integral trans-
forms [4]. However, not one of the foregoing papers has given
satisfactory results to the problem. The present investigation
therefore is undertaken to give a complete formulation of the
“two dissimilar media” crack problem in a manner which is
simpler and more thorough than would have been possible by
other, hitherto known methods.

In an enlightening paper [1], Williams considered the plane
problem of dissimilar materials with a semi-infinite crack. It was
discovered for the first time that the stresses possess an oscillatory
character of the type r=th sin_(or cos) of the argument ¢ log r,
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where r is the radial distance from the crack tip and e is a function
of material constants. This problem was later extended to the
case of bending loads by Sih and Rice [2]. While the eigenfunc-
tion approach of Williams is an expedient method for determining
qualitatively the characteristic behavior of the stress in the
vicinity of crack tips, it does not give the solution quantitatively.*

Associated with the problem of dissimilar materials having
cracks is that of the less complicated one of punches acting on a
half-plane. Using the Plemelj formulas and Cauchy integrals,
Muskhelishvili [5] has solved the problem of a single punch with
straight-line profile pressing on a horizontal base. He showed
that the stress changes its sign an infinite number of times under-
neath the punch. This oscillatory character of the stress is in
fact the same as that observed by Williams [1] for the crack
problem. Furthermore, upon identifying the width of the punch
with the length of the bond line, the Goursat functions for the
punch and crack problems take the same form. Similarly, the
problem of two collinear punches corresponds to the dissimilar.
material problem of two semi-infinite planes bonded along two
finite line segments. For a detailed account of the similarities
between the punch and crack problems, refer to the work of
Muskhelishvili [5] in conjunction with that of Erdogan [3]. It
should be pointed out that the Hilbert formulation in [3] is based
on the condition of free crack surface. A more general application
of the problem of linear relationship (or the Hilbert problem) to
the problem of straight or circular-arc cracks along the bond
line of two different materials will be discussed in a separate paper.

In an effort to obtain a complete solution of the problem,
Bahar [4] proposed an alternative method based on integral
transforms. He resolved the problem to the solution of simulta-
neous dual integral equations which in turn were reduced to a
system of linear algebraic equations by means of the discontinuous
Weber-Sonine-Schafheitlin integrals. In contrast to all the pre-
vious results [1, 2, 3, 5], he found that the stresses near the crack

¢ Note that in [2] the Goursat functions were expressed inde-
pendently of uncertainties of both the external loads and the crack
dimensions.
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tip are not oscillatory in character Lut decay monotonically as r,
the radial distance from the crack front, increases. The validity
of this result is therefore questioned.

In what follows, it is shown how the complex-variable method
combined with eigenfunction expansion in [1, 2] can be applied
to formulate the problem of bonded dissimilar elastic planes con-
taining cracks along the bond. Solutions are given in closed form
for a number of extensional problems of fundamental interest.
In particular, the problem of an isolated complex force, i.e., a
force vector having components in the z and y-directions, ap-
plied at an arbitrary location on each side of the crack surface is
solved. Aside from its application to such problems as wedge
loading at an arbitrary angle, the isolated-force solution may be
used as Green's functions to obtain the stresses in welded dis-
similar plates owing to any arbitrary distribution of tractions on
the crack surface.

The results in this paper are also discussed in connection with
the Griffith-Irwin theory of fracture. In their theory, the critical
length of a crack may be predicted from the crack-tip stress-
intensity factors. It is shown that these factors can be evaluated
readily from a complex potential function $(z).

Statement of Problem

Let a material with elastic properties E) and », occupy the
upper half-plane, y > 0, and a material with elastic properties E,
and vs occupy the lower half-plane, y < 0. The two materials
are bonded along straight-line segments of the z-axis. In the
following, all quantities such as the elastic constants, stresses,
and so on, pertaining to the region y > 0 and y < 0 will be marked
with subseripts 1 and 2, respectively.

Muskhelishvili [5] and others have shown that the solution to
an individual problem in the plane theory of elasticity can be re-
duced to finding two complex functions, which satisfy the bound-
ary conditions of that problem. In the case of two different ma-
terials, however, the elastic properties are discontinuous across
the bond line, and a complete solution to the problem requires the
knowledge of four complex functions $,(z), ¥;(2), j = 1, 2, of the
complex variable z = z + dy. The basic equations for two-
dimensional isotropic elasticity in the form used by Kolosov-
Muskhelishvili are

(0.); + (0,); = 4 Re[Py(2)]

(1)
(dz)j + 2i(rzy)j = leéjl(z) + ‘I”(Z)]

(0,); —
and
2G(u; + ;) = nfP(2)dz — 2®,(3) — SV (2)dz  (2)

where u;, v; are components of displacement, (a.);, (7,);, (72,);
are components of stress, and G, is the shear modulus. Also 5; =
3 — 4y; for plane strain and 9, = (3 — v,;)/(1 + »;) for general-
ized plane stress, »; being Poisson’s ratio.

Isolated Forces on Surface of a Semi-Infinite Crack

Let the semi-infinite planes of different materials be joined
along the positive z-axis, Fig. 1. A line crack is situated along
the negative z-axis extending from 2z = 0 to £ = — o and is

"Fig. 1

Isolated forces on a semi-infinite crack

opened by a complex force R = Q + iP at z = —a on each side
of the crack.

For this problem, the general forms of the Goursat functions
are given by equation (41)in [2]. These were derived by express-
ing the Airy stress function, obtained by the Williams method as
8 power series in terms of polar coordinates r and 6, in the form

Re [2¢,(2) + x,(2)]
The functions ¢;'(z) and x;"(z) are ®,(z) and ¥ (z) in this paper,
respectively. Upon defining

—23 n—d) —idl(n+ B — iBonm (3)

n=1

f(2)
it is possible to express the functions ®,(z) and ¥,(2) in terms
of f(z) alone.  The resylts are

Pi(z) = z71=i(2)

Wi(z) = 72~ HHiq(z) — 2717 ((F — daf(e) + 2M(2))
for the region y > 0 and

By(z) = 727 if(2)

o(z) = 27 HHif(2) — v =G — de)f(z) + 2of ()]

for the region y < 0. In equations (3) through (5), €is defined as
the bielastic constant given by (see equation (39) in [2])

ros[(+2)/(+5)]

The problem is to find the function f(z) such that it is holo-
morphic in a region close to the crack tip. Outside of this region,
f(z) may have poles of the order 1/z. In effect, this permits load-
ing on the crack surface except for isolated loads near the tip of
the crack. Hence, in the proximity of the requisite force R at

€ =

(©

z = —ain Fig. 1, the Goursat functions, say for y > 0, must take
the form
1
By(2) = "2_ ta
R 1 R @
a
¥i(z) =Zrz+a 2r (z + a)?

Equation (7) represents Boussinesq’s solution [6] of an isolated
force R acting on the boundary of a half-plane, but now ex-
pressed in terms of complex potentials. Upon comparing both
equations (4) and (7) for the stresses in the neighborhood of the

pole at z = —a, it is found that
P —iQ att'
= —_— 8)
fz) 2me™ z4a (

Inserting equation (8) into (4) and (5) gives the Goursat func-
tions from which the stresses and displacements can be computed
without difficulty.

Goursat Functions for Finite-Crack Problems

The Goursat functions, equations (4) and (5), originally derived
for a semi-infinite crack, may be modified to solve the problem of a
finite crack, Fig. 2. Since the branch points are now located at
2z = =ta (the crack tips), the singular terms (z — @)~ !~ %€ and
(z + a)~**i¢ must be introduced into the complex potentials
®,(z) and ¥,(z). This is accomplished by defining f(z) in equa-
tions (4) and (5) as

fz) = (z + a) " Hiy(z) (9)

in which g(z) is well behaved at z = =a and it may have poles
sufficiently far away from the crack tip when isolated forces are
present.
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Fig. 2 Infinite plate with a crack subjected to stresses at infinity

In addition, the effect of the translation of coordinate axes on
the Goursat functions must be considered. Denote by ®,(2),
W,(z) the functions referred to the axes z, y and $;*(2), ¥;*(z)
to z* y* (see Fig. 2). Since the stress components, equation
(1), are not altered by the translation z = z* 4 a, it is observed
that

P(z) = ;%2 — a)

Yi(z) = ¥;*z — a) — ad;*(z — a)
Making use of equations (9) and (10), equations (4) and (5) may
be rearranged to read as

Dy(z) = g(2)F(z) + A
Wi(z) = e"j(2)F(2)

(10)

o (11)
[?-;“—2“;” o(2) — zg’(z)] Fz) = (4 + 4)
2 —aQa
and
®y(2) = e7g(2)F(2) + pA
Tyz) = a(z)F(gz) ‘ 12)
gane | LR ) ) | R - d 4+ D
where
g = [Gm + DI/[Gi(ma + 1)]
and
F(z) = (22 — at)="s (fﬂ) (13)
zZ—a

Those terms containing the complex constant A represent the
degenerate case of ®,(z) and ¥;(z). A detailed derivation is given
in Appendix 1.

It can be shown that equations (11) and (12) give zero stresses
on the crack surface and continuous stresses across the bond line,
lzl > aforz = 2. The continuity of displacements may be veri-
fied by first computing for the complex displacements

2G (w1 + i) = 7 f9(2)F(2)dz
— & fg(@)F(8)dz + (2 — 2)()F(2) (14)
in the upper half-plane ard
2Gi(wa + i2) = €7 nfg()F(2)dz — So(2)F(2)dz
— &7z — 2)j(2)F(2) (15)
in the lower half-plane. from equations (14) and (15), the dif-

ference between the displzements for y > 0 and y < 0 is found to
be

2[(ur + 1) — (uz + t02)] = (% — e Z,—) Jo(z)F(2)dz
1 2

+ (Gi:.’ — g27e C.%l) fg(Z)F(Z)dz‘ (16)

on the bond line z = 2. In view of equation (6), this difference is

indeed zero when
Ja(2)F(z)dz

is single-valued on the bond line.

Hence, the Goursat functions given by equations (11) and (12)
satisfy all the conditions of the problem of a finite crack between
two dissimilar materials. The foregoing analysis may be extended
easily to a finite or infinite number of collinear cracks. An ex-
ample is given in Appendix 2. It is now more pertinent to
illustrate the use of this method by finding the constant A and the
function g(z) for specific problems.

Extension of Infinite Plate With a Crack

From the point of view of application, the consideration of in-
finite region is of interest when the crack length is small in com-
parison with plate dimensions. The geometry of the present
problem is shown in Fig. 2, where the plate composed of two dif-
ferent materials is subjected to normal and shear stresses at in-
finity.

In order for the stresses to be bounded as z — «, the function
¢(z) can at most be linear in z; i.e.,

g(2) = Bz+C 17)

where B and C are complex constants yet to be found. The
physical interpretation of the constant A = A, 4 74; in equa-
tions (11), (12) and B = B; + 1B; in equation (17) is considerably
more complicated than in the case of similar material, ¢ = 0.
Putting equation (17) into (11) and (12) and letting z — =, then
by way of equation (1), the stresses at infinity lead to

4, = (60 + 0> 07
4 1+ &
© y ) (18)
B = B, + iB;y = Ty = Ty

1+ e

It should be mentioned that the normal stress, o,, in the z-direc-
tion is discontinuous across the bond line. Thus, it is necessary
to distinguish (&,) in the region ¥ > 0 from (¢,): in the region
y < 0. Infact, it follows directly that they are related to each
other by

G+mer -G+l
1+ o a, (19)

(a'zm)z = p'(a-zm)l +

Alternatively, equation (19) also may be obtained from the condi-
tions of continuity of stresses and displacements across the z-axis
along which the component o, has a jump (see Appendix 3).

The constant 4; may be related to the rotation at an infinitely
remote part of the z, y-plane as follows:

_ T,,,m 2G1w1" _ l <
14+e™ ' 149y u

e2r¢

Y )

2WCaor®
+’“’”>

147
(20)

©
1+ e21re Tzy

in which w;® and w:® denote the rotations at infinity in the upper
and lower half-planes, respectively. After some algebraic
manipulations, equation (20) gives

oo (20, .
ws 1 = 2G,Ga zy

In contrast to the homogeneous case (Gi = @:), where the rotation

(21)



may be assumed to vanish as it does not affect the stresses, w,”
and a4 in the bimaterial problem cannot be set arbitrarily to zero
at the same time unless 7,,” = 0.

Hitherto, no consideration has been given to the condition of
single-valuedness of displacements. It is necessary and sufficient
for the one-valuedness of u; + 4v; (j = 1, 2) that the integral

Jo(2)F(2)dz

in equations (14) and (15) be a single-valued function of z.
For |z| > a, the function F(z) in equation (13) may be represented
by a series of the form

(1 — 4e?
o1 — 4 |

223 (22)

Fa)= — + 22 4

z z

By virtue of equations (17) and (22)
Jo(2)F(2)dz = Bz + (C + 2ieaB) log z

—  §
—<1 4€a’B—-2ieaC>-1—+...
2 z

For single-valued displacements, i.e., solutions involving no dis-
locations, the integral should have no logarithmic term. There-
fore, the constant C is determined:

C = —2ieaB (23)

where B is given by equation (18). The final result in terms of
¢(z) may be written as
'w —_ i‘r,,"

ag
o) = g (24)

(z — 2iea)

from which the Goursat functions $,(z) and ¥,(z) may be ob-
tained.

Green's Function

The problem of two semi-infinite planes bonded along the
z-axis with a crack of length, 2a, centered at the origin, Fig. 3,
and having two equal and opposite forces B = Q + <P applied at
z = bis of fundamental interest, since it may be used as a Green’s
function to form the solution to other problems.

Replacing the constant a in equation (7) by —b and equating
the results in terms of stresses with those obtained from equations
(11) and (12) in the vicinity of z = b, it gives

R e~ a — b\
= — - — p2yr [ ——
9(z) 2miz — b (a? — b%) (a + b)

where A = 0 as the stresses are zero at infinity. The isolated
force solution, equation (25), may now be taken as a Green’s
function to solve problems with any loading desired on the crack
surface.

Moreover, by judicious application of the “principle of super-
position,” the solution of the problem of a crack with surface
tractions may be further used to attack all the general problems
of an infinite plate with a crack whose surface is free from trac-
tions. First, the stresses o,(z, 0) and 7,,(z, 0) on the prospective
crack surface with no crack present are computed from the pre-
scribed loading in the original problem. Then, superimposing
tractions equal and opposite to those on the prospective crack
surface (i.e., to free the crack surface), the result is

e e fa
2T —

(25)

[UV(I, 0) - iT:y(z: 0)-]

(a - z)“ vVat -zt
X z dz

g(z) =

2
— (26)

Once g(z) is known, the stresses and displacements are com-
pletely determined. Hence, equation (26) provides a direct
method of solving any problem involving a crack between two
bonded dissimilar materials.
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Fig. 3 A finite crack opened by wedge forces

Stress-Intensity Factors in Dissimilar Materials

In a previous paper [2], the stresses in the immediate vicinity
of the crack tip were given as a function of r and 6, where r is the
distance from the crack front and @ the angle between r and
the crack plane. It was found that the singular behavior of the
stresses remains proportional to the inverse square root of r (i.e.,
r='/1) a3 in the case of homogeneous materials, but the stresses
possess a pronounced oscillatory character of the type

c~r='1 (sm) (elogr)
cos

which was first observed by Williams [1]. Equation (27) shows
that the stress-intensity factors k;(j = 1, 2), used in the Griffith-
Irwin theory of fracture, can be evaluated in a manner similar to
that of the homogeneous case [7]. However, in the bimaterial
problem, k; and k; can no longer be regarded as the crack tip stress-
intensity factors for symmetrical and skew-symmetrical stress
distributions. This point will be discussed later.

An examination of equations (43) through (44) in [2] indicates
that the parameters k, and k, in general may be considered as the
strength of the stress singularities at crack tips. Quantitatively,
k,j = 1, 2) depend on the external loads and the crack dimen-
sions. For a given problem, the stress-intensity factors may be
computed from the complex potential $y(z). Take the case of a
semi-infinite crack with its tip at the origin, Fig. 1. The stress-
intensity factors at z = 0 are given by?*

k1(0) — tko(0) = 2 /2 e™* Lim 2} tied,(2)
2—0

(27)

(28)

As a first example, consider the semi-infinite crack problem
stated earlier, Fig. 1. The isolated forces P and @ are located at
s distance a away from the origin. Using equations (4) and (8),
equation (28) becomes

l/’
k:i(0) = % <§) [P cos(e log a) + @ sin (e log a)]

" (29)
k(0) = % (%) [Q cos(e log a) — P sin (e log a))

Contrary to the conclusion in [3], the stress-intensity factors for a
single bond do depend on the bielastic constant e. Thus, the
dependency of k; on the material constants is not a simple matter
of identifying it with the number of bond lines. As should have
been expected, when ¢ = 0, equation (29) reduces to the solution
for the homogeneous material.

Similarly, the evaluation of k; for a finite crack of length 2a,
Fig. 2, may be carried out by redefining equation (28) in the form

ki(a) — tko(a) = 24/2 e™ Lim (z — a)t+id,(z)  (30)
—+a
As a second example, consider a straight crack of length 2a

along the z-axis in an infinite plate with normal and shear stresses
at large distances from the crack, Fig. 2. From equations (11),

¢ Equation (48) in [2].



(24), and (30), the stress-intensity factors at z = a are obtained.
They are
olcos (€ log 2a) + 2¢ sin (e log 2a))

{+ 7(sin (e log 2a) — 2¢ cos (e log 2a)]} v,
ky = a’/?
cosh me

(31)
7(cos (e log 2a) + 2¢ sin (e log 2a)]

{— o[sin (e log 2a) — 2¢ cos (¢ log 2a)]} 1,
’Cz = a’/?
cosh e

An interesting feature of equation (31) is that both the sym-
metric and skew-symmetric loadings, ¢, and 7,,*, are inter-
mixed in the expressions for ki and k.. As a result, the k;(j = 1,
2) do not have the simple physical interpretation as in the
homogeneous case where the symmetric and skew-symmetric
loads are separately contained in k = ¢,%a"/* and k» = 7,,%a"/
for ¢ = 0. When € » 0, even if the external loads were sym-
metric, say 7,,° = 0 in equation (31), more than one stress-
intensity factor is involved. Hence, in the application of the
Griffith-Irwin theory of fracture, it is necessary to assume that a
function of k,, k. will cause the crack to grow upon reaching some
critical value. The criterion may be written as

f(kh kl) = fcr

The specific form of equation (32) must be determined experi-
mentally. Such studies will be left for future investigations.

(32)

Conclusions

A simple method for determining the Goursat functions for
two dissimilar (or similar) materials bonded along straight-line
segments is developed. The unbonded portion of the interface
may be regarded as cracklike imperfections. The derivation
combines an eigenfunction-expansion method with the complex-
function theory of Muskhelishvili. The problem of isolated
forces on the crack surface is solved with the aid of Boussinesq’s
solution. .

In general, the results in this paper can be used in any one of the
current fracture-mechanics theories. In particular, it is shown
that the concept of stress-intensity factor in the Griffith-Irwin
theory of fracture may be extended to cracks in dissimilar
materials.

The Goursat functions for out-of-plane bending of cracks along
the interface of two joined materials may be obtained in the same
way. These results will be reported at a later date.
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APPENDIX 1

Degenerate Case of Goursat Functions

When the Goursat functions ®,(z) and W ,(z) degenerate to the
constants 4; and B;, respectively, equations (1) and (2) may be
written as

(0.); + (0,); = 2(4; + 4))
(0); — (0.); + 2i(r,,); = 2B,
2G;(u; + ;) = (n,4; — A; — B))

(33)

where j = 1, 2. Now, consider a uniaxial state of stress parallel
to the crack surface which is not affected by the presence of the
crack. Thisis given by

(o h + A1 h = (g, + (7, = 0
Hence, equation (33) yields
—-B; = 4;+ 4,

ji=12 (34)

From equation (34) and the continuity of displacements along the
bond line, i.e.,
w + W = up + 1y, at y=0
it is found that
G m + 1)A; = Gi(m: + 1)4s (35)

To simplify the notation, let 4; = 4. Thus, the Goursat func-
tions for the two materials become

P, = 4, ¥, = —(4 + A), for y>0
and
_G(mt1 (36)
& G (ﬂa + 1) 4
G fm+1
V= —— | —— ] (4 X f
s Gx(nz-f-l)( + 4) or <0

APPENDIX 2

An Infinite Row of Gollinear Cracks

The problem of an infinite series of equal cracks of length 2a
along the bond line of two dissimilar materials and spaced at con-
stant intervals b(>>2a) may be solved by the method described
earlier. Referring to Fig. 4 for notation and the external loads at
infinity, analogously to the expressions of (11), (13), and (17),
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Fig. 4 An infinite series of collinear cracks between two dissimilar
materials



®,(z) is represented in the periodic form, giving stress-free crack
surface and uniform stress at infinity,

+
=B JI (z—nb—d)F(z—nb)+ A4

nw —o

o (139) (50) e () |
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One may show that for single-valued displacements, d = 27ea; and

that boundary conditions at infinity are satisfied by expressing

A = Ay + A, and B = B, + 1B, in terms of the applied stresses

and rotation through equations identical to (18) and (20).
Noting that

$y(2)

sin mt = mt ﬁ (1 — t3/n?),

n=1

R % — —f—1e
- Bsin (2 s 2ea) [sin w(z . a)]
—=$+ie
X [sin me :’ “)] +4 @37

and the remaining Goursat functions are given by
Wy(z) = ¢ [Py(z) — 4] — [Bi(2) — 4 + 28,(2)] — (4 + )
D(2) = 7¢[Pi(2) — 4] + pd

@1(1)

Uy(2) = [$y(z) — ] — @7 [Pi(z) — A + 28,(2)] — w(A + )

In the special case when € = 0, the foregoing solution reduces to
that obtained by Koiter [8] for two similar materials.

APPENDIX 3

Stress Jump Across Interface

In general, equation (19) may be derived by considering the
equilibrium of an element occupying both the region y > 0 and
y < 0, ¥y = 0 being the bond line. The stress component o, is
taken to be discontinuous across the line y = 0 and the strain
component ¢, to be continuous along such a line, i.e.,

(e:h = (€

It follows from the strain-stress relations that

E E
(o) = E—,:(O';)l + [Vz - E: Vx] g, (38)
for plane stress and
Es (1 — y? 121 E, Vl(‘l + Vl)
(0% = 5 (1 = »2*) (e + [1 e ]o‘,

(39)

for plane strain. Equations (38) and (39) may be made into a
single generalization upon defining %,(j = 1, 2) such that 5; =

3 — 4y, for plane strain and 7; = (3 — »;)/(1 + »;) for plane
stress. Moreover, using equation (6), the final result may be put
into the form of equation (19).



