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In the Distribution of Rises and Fills 
m i s Random Process 

This paper is concerned with the statistics of the height of rise and fall for continuous 
random processes. In particular, approximate methods are given for determining the 
probability density of the increment in a random continuous function as the function 
passes from one extremum to the next. Application of the general result is made to the 
case of processes with a Gaussian distribution. Numerical results are given for four 
special cases of stationary Gaussian processes. Computed results are found to agree-
well with available experimental data. The knowledge of such statistical information is 
of use in studies dealing with fatigue under random loadings. 

Statement of Problem 
C O N S I D E R a continuous and twice differentiable ran-

dom function, x(t). The purpose of this work is to predict the 
probability density for the height of rise or fall of x{t) as this 
function passes from one extremum to the next. In what follows 
it will be convenient to view the independent variable t as the 
time and x(t) as a random time function. 

Assuming that the first extremum is a minimum, the function 
to be computed is the joint density P(a, a', T) where 

P(a, a', r)da da'dr = probability that, given a minimum of 
x(t) at ( = 0, the next maximum will occur in the time interval 
T < t < r + dr, with a < x(0) < a + da and a' < x(r) < a' + 
da' 

This joint density leads to a great deal of information on the 
statistics of the rise and fall distribution. From it the density 
function for the height of rise can be computed as follows: 

o -j- co 
P(h) = J J P(a, a + h, r)da dr (1) 

where 

P(h)dh = probability that the increment of the function x(t) 
as this function passes from a minimum at t = 0 to the next 
maximum falls within the range h to h + d-h 

More particular information on the density of the height of rise h 
for the class of minima occurring at some particular level a may 
also be obtained. For example, we may write 

P(h\a) = -J— ( P(a, a + li, r)dr (2) 
QM Jo 

where 

Q(a)da = probabilitj' that, given a minimum of x(t) at t = 0, 
the value x(0) of this minimum falls within the range a t o a + 
da 

and 

P{h\a)dh = probability that, given a minimum of x{t) at I = 0 
with z(0) = a, the height of rise in x{t) in going to the next 
maximum falls within the range h to h + dh 

Such information is of use in evaluating the fatigue life of struc-
tural members subjected to random loadings [l],1 and in predict-
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ing the rate of propagation of a fatigue crack under random load-
ings [2]. A discussion of the rise and fall problem in somewhat 
greater detail than to be given here is contained in [5]. 

Approximate Formulation 
Attempts at an exact computation of P(a, a', r ) by the method 

of exclusion and inclusion, which will be referred to later, lead to a 
hopelessly complex expression which can be evaluated only in 
certain trivial cases. Thus it was found necessary to use the 
following approximate formulation: 

Using the law of conditional probabilities, the probability 
density P(a, a', T) may be expressed as the product 

P(a, a', r ) = F<,(a, a'\r)F(r) (3) 

where 

F 0 ( a , a'\r)dada' = probability that, given a minimum of x(t) at 
t = 0 and the next maximum at t = T, the values of x ( 0 ) and 
x(r) fall within the ranges « < x ( 0 ) < a + d a and 
a ' < X(T) < a' + da' 

F(r)dr = probability that, given a minimum of x(t) at I = 0, the 
next maximum occurs in the interval r < I <r + dr 

We note that F(T) is the probability density for the time be-
tween zero crossings of x(t). Since no solution is known to the 
zero-crossing problem, which is valid over the entire range of time 
between zero crossings, an approximate expression will be de-
veloped subsequently forF(r) . Similarly, we shall approximate 
the conditional joint density F0(a, a'\r) bjr writing 

Fo(«, a'\r) « f0(a, a'\r) (4) 

where 

fo(a, a'\r)da da' = probability that, given a minimum of x{t) at 
t = 0 and a maximum at t = r, the values of x(0) and X(T) fall 
within the ranges a < x{0) < a + da and a' < x(r) < a' + 
da' 

The difference between F0(a, a'\r) and f0(a, a'\r) lies in the 
fact that in the former case it is assumed that the first maximum 
after a minimum at t = 0 occurs at t = r, while in the latter case 
it is assumed only that a maximum (not necessarily the first) 
after a minimum at t = 0 occurs at t = r. For small values of r 
the probability of having a maximum at r and some other maxi-
mum in the interval 0 < t < r is correspondingly small and the 
approximation is quite good. For larger values of r the dif-
ference between the two expressions becomes significant but, 
since F(T) approaches zero when r increases indefinitely because 
of the high probability of a first maximum having already occurred 
in the interval 0 < t <T, the discrepancy for large values of r is 
not expected to contribute significantly to the. error. 

The next step is an approximation for F(r). First, an exact ex-

398 / J U N E 1 9 6 5 Transactions of the A S M E 
Copyright © 1965 by ASME



pression will be developed from which the approximation may be 
constructed. Instead of restricting the discussion to the case of 
rise and fall in a random curve, the development, will be giveu in 
general terms. 

Let G(T)CIT be the probability that the first new occurrence of 
an event which happened at t = 0 takes place in the interval r < 
t < T + dr. Let o(r|0 < t < R)dr be the probability that, given 
that the event occurred at t = 0 and given no occurrence 
of the event in the interval 0 < t < r, the event occurs in 
the interval r < T < T + dr. Then, by the law of con-
ditional probabilities, the probability of a first new occurrence in 
t.he interval r < t < r + dr is the probability of an occurrence 
in that interval given no occurrence for 0 < t < r multiplied by 
the probability of no occurrence for 0 < t < r. Thus 

G ( r ) = q(r|0 < t < t) -<1 J" 
Jo 

G{t)dt 

G(T) « q(R) exp J- j" qWdt (3) 

The foregoing approximation of g(T|0 < t < r ) by q(t) results 
in neglecting the dependence of an occurrence of the event at t = T 
on a prior occurrence of the event in the interval 0 < t < T. 
However, the dependence of an occurrence of the event at t = r 
on the given occurrence at t = 0 is taken into account. The ap-
proximate relation (8) may be used for a variety of first new 
occurrence problems, and the relation becomes exact when 
the occurrence of an event at t = r is independent of the occur-
rence of the event at some value of t in the interval 0 < t < T. 

For very small values of r, the exponential in (8) is close to 
unity and the relation reduces to G(r) « q(r); this is a good 
approximation since the probability of an event occurring in 0 < t 
< T is then very small. For very large values of r, relation (8) 
may be wTritten in the form 

G{T) exp [q( c°) - q(l)\dl\ q(«>) exp { cc)r} 

which, except for a constant factor, represents the probability 
density of the first new occurrence of a process consisting of 
events occurring independently in time. 

For values of T which are neither very large nor veiy small, little 
can be said about the closeness of the approximation, but it should 
be noted that the integral of G(r), as approximated in (8), over 
values of T from zero to infinity gives unity. 

Returning now to F(T), the probability density for the first new 
occurrence of an extremum in a random function x(t), we let 

p(r)dr = probability that, giveu a minimum of x(t) at t 
maximum occurs in the time interval r < t < r + d~ 

0, a 

Then, under the assumptions leading to the approximation found 
in (8), we may write 

F(r) ~ p(r) exp H p(t)dl (9) 

Recalling the approximation obtained for Fo(a, a'\r) in (4) and 
substituting into (3), we have 

P(a, a', r ) = fa(a, a ' | r ) p ( T ) e 
- /„TP( O'U 

(10) 

The product of the first two terms in (10) is simply, by the law 
of conditional probability, the function/(a, a ' , r ) where 

/ ( a , a', r)da da'dr = probability that, given a minimum of x(l) 
at t = 0, a maximum will occur in the time interval r < t < r 
+ dr, with a < x(0) < a + da and a' < X(T) < a' + da' 

Thus the final form of the approximation for the joint density 
P(a, a.', T) is 

P(a, a', T) =5 f(a, a', r) exp pirn ( i d 

(5) 

Solving this equation yields the following expression for the 
probability density of the first new occurrence: 

G(T) = ?(T|0 < t < r) exp J G(s|0 < I < s)tf.sj (6) 

At this point the approximation 

?(r|0 < t < T) ~ q(r) (7) 

is made where q(r) dr is the probability of an occurrence in the 
interval r < t < r + dr given the event occurred at t = 0. The 
corresponding approximation for the probability density of the 
first new occurrence is 

To apply the approximate foregoing formula, the functions 
f(a, a', T) and p(r) must be expressed in terms of the joint 
probability-density functions of the particular continuous random 
function x(t) under consideration. 

To compute p(r), let g(/3, yyifidy = probability that /3 < i (0) 
< P + df3 and 7 < *(0) < 7 + ^7 

and 

9(0, y; 0', 7 ' ; r)dfidy dp' dy' = probability that P < x(0) < 
P + dP, y < i ;(0) < 7 + dy, P' < x(r) < P' + d0', and 
7 ' < X(T) < y' + dy'. 

Then 

J 0 Jo 
77'ff(0i 7; o. y'\ T)(iy <iy' 

P(T) = — ( 1 2 ) 

7f f (0 , y)dy 

To compute/(a, a', r), let 

g(a, p, 7; a', P',y' \ r)da dp dy da' dP' dy' = probability that 
a < x(0) < a + da, P < x(0) < P + dp, y < x(0) <y + dy, 
a' < X(T) < a' + da', P' < X(r) < 0' + d0', and y' < 
x(T) < y' + dy' 

Then 

f(a, a', T) = 
. ' o J o 

yy'g(a, 0, y; a',0,y'] r)dy dy' 

yg(0, y)dy 

(13) 

Details of the derivations of (12) and (13) have been omitted 
here. They may easily be filled in by referring to similar deriva-
tions given in [3], 

Expressions for Error in Approximating 
To obtain a better understanding of the error involved in the 

approximations introduced in the preceding section, the formulas 
developed there will be compared with exact expressions obtained 
by the method of inclusion and exclusion. First, consider the 
approximation 

- / V p w r f f 
F(T) - p(r)E J (9) 

obtained for the probability density of the time T between suc-
cessive extrema. The exact value of F(T) may be expressed as a 
series of integrals through a straightforward application of the 
inclusion and exclusion method as indicated in [3]: 

, t)dk F(T) = P(T) - 7, J V(T, 

— f" f ' 
21 J o J o + 27 P(T, L„ h)dh dk - • • • (14) 
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where 

p(r, ti, k, . . ., tk)dr dti dl> . . . dlk = probability that, given a 
minimum at t = 0, maxima will occur in the intervals r < t < 
T + dr, ti <t <h + dt,,k<t <k + dk, . . ., and th < t < tk 

+ dlk 

Expanding the exponential in the right member of (9) in a 
Taylor series, one obtains 

P(T) exp - | p ( { ) f « l = p(r) - | piryp^yik 

21 J o f 0 
+ J i I I v ^ M i M i ' M h d h - . . . (15 ) 

Subtracting (15) from (14) term by term yields the difference be-
tween the exact and the approximate expressions for F(T)\ 

F{T) - p(r) exp p(t)dt 
I 

n j > " h) ~ p(r)p(<,)}f?<i 

+ J J iv(r, k, k) ~ t t r M M * dt, + . . . (16) 

We thus check that the error in the approximation (9) is due to 
neglecting the dependence of a maximum at some particular time 
on maxima at other times, though the dependence on the mini-
mum at t = 0 is taken into account. 

The final approximate expression for P(a, a', r), as given in 
(11), is 

-fSMOdt 
P(a, a', T) « f(a, a', r)e (11) 

The exact value of the probability density P(ot, a'', T) may be ex-
pressed as a series of integrals by the method of inclusion and 
exclusion: 

1 C T 
P(a, a', r ) = f(a, a', r ) — - - I / ( a . a', r , k)dk 1 • Jo 

+ | | /(«, a ' , T, lu k)dt, dU_ - . . . (17 ) 
-•Jo Jo 

where 

/ ( a , a', r, ti, 1-2, . ., tk)da da' dr dti dk • • • dtk = probability that, 
given a minimum at t = 0, a maximum will occur in the time 
interval r < t < r + dr with a < x(0) < a + da and a' < 
X(T) < a' + da', and that maxima will occur in the time in-
tervals h < t < k + dti, k <t<k + dk, • • ., tk < I < tk + dt.,. 

Expanding the exponential in the right member of (10) in a 
Taylor series, one obtains 

-foTp(»dt i CT 

f(a, a', r)e = f(a, a', r ) - — I f(a, a', r)p(li)dk 
1! J o 

+ ^ lo lo ^ a>' T)v[ t l )v{U)c lM d k~ ' ' ' (1S) 

Subtracting (IS) from (17) term by term yields the difference 
between the exact and the approximate expressions for P(a, a', 
r ) : 

P(a, a',r) — f(a, a',r)e J° 

= 7 7 J 0 a ' ' T ) l i ) ~ f ( - a ' a ' ' r ) p ^ ( U l 

+ ^ fo fo 'f(a' a'' T'th 

- f(a, a', T)p(k)p(k)}dtidk - .. . (19) 
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Again we note that an error is introduced by neglecting the de-
pendence of a maximum at some particular time on maxima a! 
other times, although the dependence on the minimum at t = 0 is 
taken into account. An additional error is introduced, however, 
by neglecting the dependence between the occurrence of a maxi-
mum at some value of t in the interval 0 < t < r and the values a 
and a' of the function at the end points of the interval, although 
the dependence between a maximum at t = r and the values a' 
and a' is taken into account. 

As a closing note to this section, it should be indicated that, 
since the function P(a, a', r ) is integrated over all r-values in re-
lations (1) and (2), one should expect the error on the probability 
densities P(h) or P(h\a) to be smaller than the error onP(a , a',r ). 

Average Height of Rise and Fail 
For stationary processes, the average height of rise and fall 

may be very simply computed, although the determination of the 
distribution of rises and falls remains an extremely difficult 
problem. The method consists of finding the average rise and 
fall per unit time and dividing the value obtained by the expected 
number of extrema per unit time. Now, the average rise and 
fall per unit time is the expected value ([.ij) of the absolute value 
of the derivative of the process x(t). Thus, if Nc is the expected 
number of extrema per unit time, 

< H > 

Kc 

It is shown in [3] that 

N M<7.Kr(0, 7 ) d y 

(20) 

(21) 

where gyj(f3. y) is the joint probability density of the first and 
second derivatives. Denoting by ff:f|:r(Y||S) and g±(fi), respec-
tively, the conditional density of # given x, and the density of .f, 
one obtains by the law of conditional probability 

Arc = g-A 0) Mf7S|±(7|0)d7 

K, = g i (0 ) (j:r||i = 0) 

Thus, the average rise and fall may be expressed as 

< N > /; = 
<7i(0){|:r|\x = 0 ) 

(23) 

In certain cases the average height of rise may be expressed in 
terms of the ratio of the expected number of mean level crossings 
per unit time to the expected number of extrema per unit. time. 
To illustrate, suppose that the process x(t) has zero mean. Then 
the expected number of mean level crossings (or zero crossings) 
per unit time is [3] 

N „ = xi.(0, 0)d$ (24) 

A reasoning similar to the one used to derive (22) yields 

Aro = ffl(0)(|.i||.T = 0) (25) 

where gx(a) denotes the probability density of :r. Now suppose 
the process x(l) is such that 

= 0) = <l®l> 
Then, by equations (20) and (25), one obtains in that case 

1 Ao 
h = 

a A o) Ke 

(26) 

(27) 

It is noted in passing that the condition expressed by equation 
(26) is satisfied in at least one type of stationary process, namely, 
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a process in which the joint density of x and x is two-dimensional 
Gaussian. In anj' stationary process, the function x and its 
derivative x are uncorrelated random variables, but this condition 
alone does not ensure that (26) will hold. A somewhat stronger 
condition is required; namely, that the conditional density of x, 
given that x attains its mean value, is identical to the density of x, 

{/s|*(/S|0) = g i W ) (28) 

For processes in which (26) holds, equation (27) is valid, and 
this leads to a convenient experimental method for determining 
h which clearly does not involve the actual measurement of rise 
and fall heights. Equation (27) also leads to an upper bound 
for h. Since the expected number of extrema per unit time must 
always be greater than or equal to the expected number of zero 
crossings per unit time, one must have 

[ M ] = 

placing a' by « + h and writing out the Gaussian expression for 
!/(«, 0, 7 ; a + h, 0, 7 ' ; r) , one obtains after reductions 

/(a, « + It, T) 
- - « " ( o r w _ R'"(0) . 

X V I M 
exp [ - ( s n + sH)(ah + a-) - vSu'i2] 

X I | 7 7 ' exp [ - -;Vstt(72 + 7 ' 2 ) ~ Sm77' - Sii ' i7' 
J 0 J 0 

- s1 6 / i7 - (s,3 + S,6)q:(7 + 7 ' ) ] f ? 7 d y ' ( 3 4 ) 

h £ 
0,(0) 

(29 ) 

h'(r) = {x(l)x(t + r ) ) 

p(r) = 
1 

. « i v ( 0 ) J 

•A 
[J- - A'2]1 

where 

J 0 " " " ' 2ir _ - 7 ? " ( 0 ) J 

Here |M| is the determinant of the correlations matrix (;!/], and 
s iy is the element in the /th row and jth column of the inverse of 
the correlation matrix [M], where 

(35) 

Note that \M1 and the elements sf;- are functions of r. 
Since finding the rise and fall distribution entails an integration 

on a, let 

~R{ 0) 0 R"( 0) R{T) R'(T ) R"(T) 

0 -R"( 0) 0 -R'(T) -R'\T) — R"'{T ) 

R"(0) 0 R"(0) R"(T) R"'(T) R»XT) 

R(r) -R'(T) R"(r) R(0) 0 R"( 0) 
R\T) -R"(r) R"'(T) 0 - / ? " ( 0 ) 0 

_R"(T) -R"\r) H'-(T) R"(0) 0 R»M 

Application to Stationary Gaussian Processes 
In this section it is assumed that x(l), x(l), and x(l) form a mul-

tidimensional Gaussian distribution and have zero mean values. 
For the stationary case, such a process is statistically completely 
defined bj' the correlation function 

f(h, r ) = f(a, a 4- h, r)da (36 ) 

The expression obtained after integration and a change of varia-
bles is 

(30) .f(h, r ) = A exp [ - M i 2 ] 
J 0 Jo 

Expressions for p(r), equation (12), and f(a, a', T), equation 
(13), will be given in terms of this function and its derivatives. 
Since a function almost identical to p(r) has been used in [3], 
only the resulting expression will be given here and details of the 
derivation will be omitted: 

where 

.4 = -

uv exp [— (u- + 2cuv + !/2) 

- 2Dh(u + v)\du dv (37) 

— i ? " ( 0 ) 

7r[7r|IL/|(SII + S M ) ] ' A 

X [ { i ? " ( 0 ) } 2 - {R"{T)j2] 3"-'[ 1 + H c o t - ' ( - f f ) ] (31) 

J = tf"-(0)[{tf"(0)}2 - { / . ' " ( T ) } 2 ] + / ? " ( 0 ) { f i ' " ( T ) } 2 

IC = - f t - ( r ) [ { ^ " ( 0 ) } 2 - \R'\T)Y-} - R"(T){1{"\T)}2 

H = K[.P - IC-]-'/' 

and 

0 ^ c o t - ' ( - H ) ^ Tr (32) 

The expression for f(a, a', r) cannot be integrated in closed 
form, but it can be reduced to a single integral. First consider the 
integral in the denominator in (13). It may be written, as shown 
in [4], 

C = 

D = 

(s 13 + Sie)2 

2(s„ 4 - « „ ) . 

= — s " ) 

(Sis 4- Sie)2 

2(sn 4- s » ) 
(Sl3_+ «!G)2 

2 ( s n 4- s H ) 

Sl3 — Sl6 

R"(0) 

S33 — 

2 V 2 S33 — 
(S13 4 - SIC)2 

2 ( s „ 4-

(38) 

(39) 

(40) 

(41) 

(33) 

All attempts at evaluating the double integral in (37) in closed 
form have proved futile. However, through the transformation 
of coordinates u = r cos 6 and v = r sin 6, the double integral 
may be reduced to a single integral in d; and the infinite upper 
limit, inconvenient for numerical evaluation, may be eliminated. 
The result, after integration in r and noting the symmetry about 
6 = 7r/4, is 

and represents the expected number of maxima per unit time (or 
the reciprocal of the mean time between successive maxima). 

The integrand in the numerator of (13) may be evaluated from 
the multidimensional Gaussian distribution as shown in [4]. l ie-

f(h,r) = \A exp [ - / i / i 2 ] 
r * ' 1 sin 20 

J0 (1 4- C sin 20)2 ' sm 2ey ( 4 2 ) 

[ V ^ ( f 4- z-) exp (z2 ) { l 4- erf(2)} 4- (1 4- z*)]d6 
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where 

2 = z(A, T, D) = 
Dh (sin 6 + cos 0) 
(1 + C sin 20)1/'' 

and here erf (x) is defined by 

erf (x) = 
\/ir Jo 

dt 

(43) 

(44) 

p(r) 

Since by its definition 

' { f i<-»(0) } 2 - iS" (0) /2<«(0) ' 
7?"(0)2?»>(0) 

p (r ) = 1 /(A, r)dh 

(45) 

(46) 

and since /(A, T) > 0 for all values of A, it follows that/(A, T) also 
varies linearly with r when r is near zero. 

The average height of rise and fall for stationary Gaussian 
processes is readily computed from equation (20). The expected 
absolute value of x is 

< H > = f i 
[ —2TT72"(0)] 1/'2 

exp 
1 

_ 2 # " ( 0 ) _ 

2 

d(5 

- 0 ) 
7T 

'A 
(47) 

Ar, 
2tt 

Tlius, the average height of rise and fall is 

h = - f t " ( 0 ) 

(48) 

(49) 

Since, for a stationary Gaussian process x(t), the function and 
its derivative are independent random variables, equations (27) 
and (29) are valid. But, for a Gaussian process with zero mean 

£7,(0) = 
1 

_2ttH(0)_ 

•A 

Thus, equations (27) and (29) yield, respectively 

h = [2x72(0)] 
No 
JV, 

A $ [2x7?(0)] 

(50) 

(51) 

(52) 

Equation (51) leads to a particularly simple method for the ex-
perimental determination of h. Instead of actually measuring 
rise and fall heights, one need only determine the variance R{0) 
of the process and make a count, over a sufficiently large time 
interval, of the number of mean crossings and extrema. As far 
as equation (52) is concerned, it. will be seen later that the upper 
bound is approached as the spectral "bandwidth" of the process is 
narrowed. 

Numerical Examples for Stationary Gaussian Processes 
Some numerical examples are given, here for stationary Gaus-

sian random functions with power spectra constant over a certain 
frequency domain and zero elsewhere. Letting a'2 represent the 
variance of x{t), the power spectrum F{co) may be expressed as 

) 77 777" f ° r fe < oj < coc F(co) = <(1 — /3)coc (53) 

Some observations will now be made on the behavior of p(r) 
and/(A, r ) for values of r close to zero. Since numerical integra-
tions must be used to evaluate/(A, r ) and finally to carry out the 
integration over r from 0 to co, the behavior near r = 0 is quite 
important. The reason is that, because of the structure of the 
equations, slight numerical inaccuracies are particularly critical 
for small values of r. Fortunately, both p(r ) and /(A, r ) are 
equal to zero for r = 0. In fact, it has been shown in reference [3] 
that the form of p(r) for r near zero is 

0 otherwise 

where 0 ^ /3 < 1, coc is an upper cut-off frequency, and (3coc is a 
lower cut-off frequency. The case (3 = 0 corresponds to the ideal 
low-pass filter, while cases for which F3 is a substantial fraction of 
one correspond to narrow-band filters. 

In performing numerical computations, it is convenient to use 
dimensionless quantities. To this end, we define the random 
process with unit variance and zero mean y(t) as 

v(t) = 
x(t) - (x(t)) 

(54) 

and introduce the dimensionless time <p = coct. We shall compute 
the rise and fall density for y(t), which is equivalent to computing 
the density of A/a where A is a rise or fall height of x(t). The 
correlation function of y(t), expressed in terms of >p, is given by 

R(<c) = 
i f " / 
- F(co) cos -

Jo 
- <p I doi 

(1 - 0)<P 
[sin <p — sin flip] (55) 

In the present notation, and in the light of the approximation 
developed in equation (11), the expression (1) for the rise and fall 
density becomes 

P(h/a) = f f(h/a, <p) exp 
Jo f Jo 

p(\)d\ dip (56) 

The expected number of extrema per unit time is, from reference 
[3] where /(A/cr, <p) and p(<p) are defined for stationary Gaussian 

processes by equations (42) and (31). The evaluation of these 
functions requires a knowledge of R(<p) and its first four deriva-
tives for all ip. 

The average height of rise and fall, evaluated from equation 
(49), is 

'A i _ 03 
h/a = 

IOTT 
. (1 - j8)( l - fr). 

(57) 

It is easily verified that h /a approaches its upper bound of (27T)1/2 

when J3 approaches 1. 
The actual evaluation of P(Ji/a) required extensive digital com-

puting. Results were obtained for 19 values of A/cr ranging from 
0 to 7.2 with spacings of 0.4. The integrations in <p and X indi-
cated in (56) were carried out by computing the integrand for 
particular values of ip spaced at intervals of 0.5, which is about 
1/8 of the expected distance between successive extrema. The 
integration from 0 to <» in equation (56) was actually carried out 
from 0 to 50. An additional integration in 0 indicated in equation 
(42) was carried out by computing the integrand at intervals of 
7T/32. Aside from the time-consuming numerical integrations, the 
primary difficulty was in the accurate determination of the in-
verse members of the correlation matrix of (35). The inversion 
had to be carried out with an accuracy of 16 digits in order to 
yield meaningful results, and even then the inverse members 
could not be obtained for ip less than 2. 

The rise and fall density was computed for four values of 0 ; 
namely (3 = 0, 0.25, 0.50, and 0.75. Results are shown in Figs. 1 
through 4. 

The dashed line shown in Fig. 1 is a plot of experimental data 
obtained b}' Ley bold [1] from a digitally generated random func-
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tion with an ideal low-pass-filter power spectrum. It represents a 
sample of approximately 53,000 rises and falls. Agreement is 
seen to be good. The dashed line in Fig. 4 is a plot of a Rayleigh 
distributed rise and fall distribution which would occur in an ex-
tremely narrow-band process representable as a sine wave with an 
amplitude varying negligibly from peak to peak. The comparison 
seems appropriate since the case for which (3 = 0.75 has an average 

Fig. 2 Rise and fall density, /? = l / 4 

Fig. 3 Rise and fall density, /J = l / 2 

rise and fall height differing by only a few percent from the upper 
bound of (27r)1//2. The computed results in this case for small 7;/fl-
are not shown since they were wildly fluctuating and attained 
a value at h/a = 0.4 which was nearly three times the maximum 
value shown in Fig. 4. 

Figs. 2 and 3 for /3 = 0.25 and 0.50 show an unexpected hump 
for small h/a. Owing to the extreme complexity of the numerical 
computations, we are unable to say whether this inconsistency for 
small h /a is due to numerical inaccuracies or is inherent in the 
approximation developed. The agreement with experimental 
data on the one hand and the limiting case of a Rayleigh distribu-
tion on the other indicates that the approximation developed gives 
a reasonable prediction of the rise and fall density for the larger 
values of h/a. Since in applications [2] one is frequently in-
terested in only the higher moments of the rise and fall density, 
the results are sufficient. 

In preparing Figs. 1 through 3, the computed results have been 
corrected slightly for numerical inaccuracies. A check of the 
derivation for the rise and fall density wall show that the integral 
from — oo to + co of P(h/a) should give unity. Numerical com-
putations for negative h/a gave a computed result for the area 
which varied from about 0.95 to 0.97. Taking this to be a 
measure of computer error due to the various numerical integra-
tions, we have divided all results by the computed area. 

Fig. 4 Rise and fal l density, /3 = 3 / 4 (narrow-band filter) 
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Table 1 

0 = 0.25 /3 = 0.50 13 = 0.75 
2.111 2.351 2.47S 
2.026 2.244 
5.473 6.415 

17.484 21.491 
63.110 81.297 

M o m e n t 0 = 0 
(h/a) exact 1.868 
(h/a) computed 1.810 
(It-/a-) computed 4.469 
(li3/a3) computed 13.112 
(hi/ai) c o m p u t e d . . . . 43.573 

Fig. 5 is a combined plot of all the computed curves in Figs. 1 
through 4. Table 1 gives a summary of the first four moments 
of h /a for the various cases considered. 
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