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The Bending of Plates of Dissimilar 
Materials With Cracks 
This paper considers the problem of bending of a plate composed of two plates of ma-
terials having dissimilar elastic properties, bonded together along a straight line which 
sustains a crack. Both materials are assumed to be isotropic and, homogeneous. Upon 
obtaining stress solutions, it is found that the significant stresses are inversely propor-
tional to the square root of the radial distance from the crack front and have an oscilla-
tory character, which is shown to be confined to the immediate vicinity of the crack tip. A 
two-parameter set of equations expressing the general form of the stress distribution 
around the tip of such a crack is provided as it is of primary importance in predicting 
the strength of cracked plates. Some analogies are also observed between the charac-
teristic equations occurring in the extension and bending of cracked plates composed of 
dissimilar materials. 

A n u m b e r of problems involving "two dissimilar 
media" has appeared in recent publications. Among those of 
practical interest are the cases of inserts of various shapes in in-
finite plates [1, 2, 3],1 two joined half-planes [2, 4], and cracks 
along the bonded surfaces of half-planes of different materials 
[5, 6]. The main concern of this investigation will be to deter-
mine the stresses associated with "crack-like" imperfections be-
tween the surfaces of two joined dissimilar materials owing to 
bending loads. 

One of the early investigations in this field was by Williams 
[5], who used an eigenfunction approach to determine the singular 
character of the extensional stress near the tip of a crack at the 
interface between two materials. He found that the stresses have 
an oscillatory character with a maximum modulus determined by 
r _ 1/'', where r is the distance from the crack tip. This behavior 
was later verified by Erdogan [6] using a complex variable method 
similar to Muskhelishvili's [1], as formulated by Sherman [7]. 
Zak and Williams [8] also have investigated the extensional stress 
field around the root of a crack, which is orientated perpendicu-
larly to the dividing line between two dissimilar media. How-
ever, their results are confined to in-plane loads. 

More specifically, the problem considered here is that of the 
bending of two elastic plates bonded along a straight line with 
a through-the-thickness crack in the line of bonding. For pur-
poses of examining the bending solution in a region near the crack 
tip, an origin of coordinates is placed at the tip with the positive 
z-axis lying along the bimaterial interface and the negative 
z-axis lying along the crack. The elastic constants describing the 
material in the upper half-plane are different from those in the 
lower half-plane and accordingly all quantities referred to the 
regions y > 0 and y < 0 will be designated by subscripts 1 and 2, 
respectively. On the basis of the Poisson-Kirchhoff theory of thin 
plates, the boundary conditions for this problem can be con-
veniently stated in terms of polar coordinates, r and 9, Fig. 1, as 
follows: 

(a) The crack surfaces at 9 = ±7r are assumed to satisfy the 
free-edge conditions of Kirchhoff given by 
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[(Me\]e=* = 0, [(M9)2]s= = 0 
(1) 

[ (V» ) , ] « . r = 0, [ ( 7 » W » - - , = 0 
(6) The bending moments and Kirchhoff shears are continuous 

across the uncracked portion of interface; i.e., 

[ l . A f f l ) i ] « = 0 = [ ( M « ) 2 ] 9 = o 
(2) 

[(Ffl)i]fl=o = [(F«)2]«=o 

(c) Continuity of the deflection and slope at 9 = 0 requires 
that 

[wj]0=o = [wi)e=Q 

n _ rj. a^l 

Unlike the homogeneous case, where the elastic properties are 
the same throughout the plate, the bimaterial case requires the 
determination of two deflection functions, Wi and wi, each of 
which must satisfy 

D j V w / r , 0) = q{r, 8), j = 1, 2 (4) 

which is the classical fourth-order differential equation governing 
the deflection of a plate in bending. 
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Fig. 1 Components of stress in polar coordinates 
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Method of Solution 
For local investigations near the crack tip, it is sufficient to 

consider only the homogeneous solution of equation (4). Accord-
ing to Williams [9], an appropriate characteristic solution of this 
homogeneous equation may be represented by 

CO 
w . = Y j r x " + 1 F / ( e ; A„), j - 1, 2 (5) 

n = 1 

where 

F,(0; X„) = a/"> sin (A„ + 1)0 + b,<»> cos (A„ + 1)0 

+ c/"> sin (X„ - 1)0 + d j M cos (X„ - 1)0 

Similar to that of the bimaterial case in plane extension [5], 
j = 1 , 2 , the eight constants a/n > , b,(n>, and so on, may be evalu-
ated from the boundary conditions stated by equations (1), (2), 
and (3). To facilitate calculation, the bending moments per unit 
length Mn Me, twisting moment per unit length M,e, and the 
Kirchhoff shearing forces per unit length F r , VQ (see [10] for nota-
tion) may be expressed in terms of the eigenfunction, F : ( 6 ; X„), 
as follows: 

(M,),- = —Dj + (1 - vj) ^jf J 

co 
= -Dj J2 ' X " _ 1 t ( X „ + D(A„ + v,)F, + VjFj"\ 

n = 1 

(Me)i = -D,- - (1 - v^ 

CO 

= - D i J2 r X " _ 1 I ( X „ + l)(f,-A„ + 1)F,- + Fj"\ 
n = 1 

< " * > ' - < ! - " ^ [ 7 4 ( ^ - 7 ) ] " ' ( 6 ) 

CO 

= (1 - ? , ) £ , X ) Kru-lF/ 
n = l 

(Vr)j = (Gr)/ - ~ ~0 (M,e),- = 
r Oi7 

OO 
= - D , ^ ^ " - 2 { ( X „ 2 - 1)(X„ + 1)F/ 

71 = 1 

+ [X„(2 - Vj) - \\F,"\ 

(Fe),- = (Qe), - £ (M,e)t = 

co 

= - ^ Z ) r x " ~ 2 { l ( X „ + D ' 
n = 1 

+ X„(X„ - 1X1 - Vj)]F,' + F/"} 

where D, = ,-3/12(l — v f ) is the flexural rigidity of the plate; 
Ej, Vj, and hj are, respectively, Young's modulus, Poisson's ratio, 
and the thickness of the plate. Primes denote differentiation 
with respect to 0. The eigenparameters, X„, in both regions are 
taken to be the same so that the boundary conditions in equa-
tions (2) and (3) will hold for arbitrary values of r. Inserting ID,-, 
(Me)j, and (Fa);- as determined by equations (5) and (6) into 
equations (1), (2), and (3), the boundary conditions become 

4 7 8 / S E P T E M B E R 1 9 6 4 

(X„ + 1)(!>,X„ + 1)F,(7t) + F,"( ir) = 0 

(X„ + 1)(I/2A„ + 1 )F 2 ( - t t ) + = 0 

1(X„ + l ) 2 + X„(X„ - 1X1 - vftFA*) + Fi"'{r) = 0 

[(A„ + 1) ' + X„(X„ - 1X1 - Vi)]F2'( —it) 

4 * Y " ( - j t ) = 0 

A [ ( A „ + l)(CIX„ + 1)F,(0) + F , " (0 ) ] 

= rnK + Div iK + 1)F,(0) + ft"(0)] 

A { [ ( X „ + 1 ? + X„(X„ - 1x1 - v,)]j?, '(o) + F i " ' ( o ) } 

= D2{ [(X„ + l ) 2 4 X„(X„ - 1X1 - vo)]Fi'(0) + F2"'(0)} (7) 

F,( 0) = Fo(0) 

F / ( 0 ) = Fi'(O) 

When the appropriate values of F, and F2 are substituted into 
equations (7), there results in eight equations in the eight un-
known constants a / " ' , b,(n), ( j = 1, 2), and so on 

°i (n )(X„ + 1) sin 7rX„ + bi(n)(X„ + 1) cos irX„ 

+ c,<">(An - Mi) sin irX„ + di<">(\„ - Mi) cos xXn = 0 

— A 2 ( " ' ( X „ + 1 ) s i n 7RX„ + 62<">(X„ + 1 ) COS TTX„ 

- c2<"'(X„ - n-2) sin irX„ + d/"\\„ - M2) cos irX„ = 0 

-a1<"'(X„ + 1) cos irX„ + b1<"'(X„ + 1) sin 7rX„ 

- c , < " ' ( X „ + M i ) COS TTX„ + D I T ' " ( X N + M i ) s i n 7RX„ = 0 

+ 1) cos 7RX„ + b 2 w (\ n + 1) sin 7rX„ 

+ C 2 ( " ' ( X „ + MS) c o s IRX„ + D 2 < " > ( X „ + / I 2 ) s i n t t X „ = 0 ( 8 ) 

B I ( " ' T ( X N + 1 ) - B 2 ( N ) ( X „ + 1 ) + F / , < " ' 7 ( X „ - M I ) 

- D 2 < " > ( X „ - M2) = 0 

A I ( N ) 7 ( X „ + 1 ) + C I ( N ) 7 ( X „ + M I ) - A 2 ( N ) ( X „ + 1 ) 

- c 2 ( N ) ( X „ + M2) = 0 

6,<") + d,<"> - b2<"> - d2<"' = 0 
a.<n)(X„ + 1) + c,(»)(X„ - 1) - «2<")(X„ + 1) 

- c>>(X„ - V = 0 

where the following contractions have been made 

Di I~1 - 3 + v1 y = D2 L r - J > " ' - n : i ( 9 ) 

For a nontrivial solution of the eight homogeneous linear equa-
tions, the determinant of the coefficients of the constants must 
vanish, which leads to a characteristic value equation of the form 

cot2 t t X „ + — — 7 = 0 (10) 
+ 1) + 7Mi(M2 + 1)J 

In contrast to the homogeneous case, the eigenvalues are ob-
served to be complex. Moreover, there are two admissible sets of 
complex eigenvalues, which are possible solutions. After some 
algebraic manipulation, they are found to be 

A . = ( » - £ ) + « , X „ = ( » - i ) - iK, n = 1 , 2 , . . . ( 1 1 ) 

where K will be defined as a "bielastic constant" of the form 

« = (12) 
2tt LM2 \7Ati + 1 / J 

Note that n must be restricted to positive integers only, so that 
the slopes in both regions are finite as r —*• 0, the crack tip. 

In the particular case where both regions have the same elastic 
properties and plate thicknesses, i.e., Mi = M2> 7 = 1> then K = 0 
and equation (11) reduces to a single set of real eigenvalues 
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x„ = x„ n ~ $, » = 1,2,... 

The minimum eigenvalue, Xmin = i , in this case will give un-
bounded stresses near the crack tip, i.e., a ~ r~'/*, which corre-
sponds to the homogeneous solution obtained by Williams [8], 
The occurrence of an imaginary part of the eigenvalue may there-
fore qualitatively affect the singular behavior of the stresses 
around the crack front. However, this behavior will be dis-
cussed subsequently. 

Now, turning to some specific applications of the foregoing re-
sults, it is possible to have two plates of identical thickness (e.g., 
Vi = v2 = 0.3 and hi = h2) but of different rigidities, say Ei/Et 

= 3. From equation (12), k = —0.236. In this case, K may be 
considered as a measure of the rigidity effects. If EI/E2 = 0, i.e., 
an elastic-to-rigid connection, then 7 = 0 and 

- - l o g 

W j = ifl,-(1)(r, 9; X„) + w,<»(r, 8; X„) (13) 

where X„ is the complex conjugate of X„. In addition, since to,-
must be real, using equation (5) the solution may be given in the 
form 

"i = Z ) [rXn+1^' )(0; X„) + rx" + 1F ;(0; X,,)] 
n = l 

= 2 Re | ] f } ^ " + ^ , ( 0 ; X„) 
Ln = 1 

(14) 

Before an explicit expression of to,- can be obtained, it is necessary 
to determine the constants a / " ' , 6,(n), and so on, by solving equa-
tion (8) simultaneously. As a matter of convenience, the results 
are expressed in terms of d2(n) as follows: 

ClM = _ * ( ^ ) e ~ 

y \Mi/ 

rf,<»> = - f - ) e~2wK (U"> 
y \Mi/ 

- ( h ^ j ^ i ) 4 W 
\ x„ + 1 / 

(15) 

-ids <"> 

where Oi(n), a2(n), . . ., di(n), d2<-") are all complex constants. Since 
a knowledge of the stress field near the crack tip is the only re-
quirement for predicting unstable crack extension, it suffices to 
consider only the minimum eigenvalue; i.e., n = 1. Further-
more, the boundary conditions for this problem are independent 
of r. Therefore, the singular behavior of the stresses must be the 

same for both materials. As a consequence, it is not necessary 
to derive both wt and to2, but say, WI. Accordingly, 

vi = 2e"V/ ' [ c o s + * log r^j 

3 + "1 o , / 3 0 \ / 8 \ — e2«U-») cos I — + K log r J + sin 0 sin ( - - k log r J 

— 2 K sin 0 c o s — K log r^J + Aa(1) [ —sin + K log r ĵ 

e) sin + k log r^j -3 + 
1 - i/,' 

2K sin 0 sin 

Since 0 < Vi < 1, k again appears as a negative constant. Subse-
quently, the ratio of the elastic constants will always be chosen 
in such a way that K is negative definite. 

Deflection in Polar Coordinates 
The transverse deflection, io,-, may be obtained from the sum of 

two solutions, each of which refers to one of the complex eigen-
values in equation (11), i.e., 

X - k log r^ - sin 8 cos - k log r ) J | + . . . (16) 

where higher order terms in r, the radial distance from the crack 
front, have been neglected. In equation (16), A ( 1 ) and 42 ( 1 ) are 
the real and imaginary parts of the complex constants A ( l ) de-
fined by 

= + a 2 ( , . i ( * ) ( £ £ ) d 2 ( " ( 1 7 ) 

In the homogeneous case, K = 0, and upon some rearrangement 
equation (16) reduces to Williams' solution2 

w 1 

when 

•'•{h-Mf̂ KV 
+ 

= - &,<», A 2 o = f 62(l) 
7 + v 5 4- 3c 

(18) 

(19) 

in which 6/1 ' and &2C1) are the constants used in [8]. 
In the usual manner, equation (16) may be used to derive the 

significant stress field around the tip of a crack. According to 
the classical theory of thin plates, the bending stresses are dis-
tributed linearly through the thickness of the plate, i.e., 

(20) 

where S is the thickness coordinate measured from the middle 
plane of the plate. The transverse shear stresses, which satisfy 
the conditions that r „ = rez = 0 for 5 = ±( / i /2) , can be obtained 
from the equations of equilibrium and are 

125 
_ h 5 (<n>), 

125 
_ h 5 (Me),-

Jfr e)j_ 
1 

AM,e)i_ 

r(Tr,),~| = 3 ( V - 4S2) R e , ) , " ] 
(21) 

Stress Distribution Near Crack T i p 
The determination of the distribution of stress in the vicinity 

of a crack plays an important role in the "Griffith-Irwin" theory 
of fracture, since it may be used subsequently to analyze the 
stability of a crack. This is more easily accomplished from the 
Goursat functions [1] than from the transverse-deflection expres-
sion (16). 

Since Wi is biharmonic, it may be represented by two complex 
functions </>i(z) and Xi(2) of the variable, z = x + iy, i.e., 

wi = Re [z<t>i{z) + Xi(*)] (22) 

By means of equations (11) and (14), the Goursat functions for 
2 See equation (8) in reference [8 ]. 
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this problem may be constructed and written in the form3 

CO 

<t>M = 2 t ( ? l + i) -
71=1 

CO 

x,(z) = -2 /1 , e ^ * 1 ' " .A<">2" (23) 
n = 1 

CO 
- ^ l (» - i ) - iK]4<n)3n 

n = 1 

The relationships for determining the moments and shears from 
the functions 4>i(z) and Xi(z) in classical plate theory may be re-
written, using equation (22), to read 

(Mr\ + {Me\ = - 4 A ( 1 + fx) Re[*, ' («)] 

(.Me)> - (Mr\ + 2i(Hre\ = 

2 A U - Vl)e2ie[zfa'\z) + x i " ( « ) ] (24) 

(Qr\ - HQs) 1 = -4/vV'(a) 

where (H,e)j = —{M,e)j. The local bending-stress components 
corresponding to n = 1 are found upon combining equations (20), 
(23), and (24). The results are 

+ Vi sin 8 sin 

X cos 

(jre) i 

G\ 

2oKi 
(1 - vl )r'/>' 

+ Pi sin 9 cos | 

X cos ^ - K log r j + [cos 9 + 2k(1 - !>,) sin 0] 

X sin - K log (3 -(- Vi)eK("—^ sin + K log 

+ < « " * ' • " " { - » ' » " ( f + ' ) 
„ • (V , \ 

+ vi sm 9 sin I — — k log r J 

+ [cos 9 + 2k(1 — vi) sin 0] cos — K log r 

r = < ^ ^ - > { - ( 2 + 3 . ) cos ( f + K log ,) 

in — K log r^ + [cos 9 + 2k(1 — VI) sin 9] 

- K log (3 + V i ) e^~ 6 ) cos + k log 

+ (1 - f,)rV> " ( 2 + 3fi) sin ( | + k log r ) 

+ Ci sin 9 cos — K log r^ 

— [cos 9 + 2k(1 — vi) sin 9) sin — K log r^ j-

+ (3 + V i V ^ - f l sin + K log R^y + . . . (25) 

- (3 + V i ) e K ^- e ) cos + k log + . . . (27) 

where 

Ki + iKt = 2 e " ( i - ik)(f - iK)(^i(1> - tA.<») (28) 

In equations (25)-(27), Gi = £ i / 2 ( l + u,) is the shear modulus of 
elasticity for the material in region y > 0. As is customary in 
plate-bending theory, the stress, (cr,),-, is assumed to be small 
compared to the other stress components and it is neglected in 
the stress-strain relations. Making use of equations (19) and 
(28) and setting k = 0 for the homogeneous case, the parts multi-
plied by the constant Iii in equations (25), (26), and (27) reduce, 
respectively, to Williams' solution [9], equations (19), (20), and 
(21) for symmetrical bending with respect to the crack line. In 
a similar fashion, the parts containing the constant Ki in equations 
(25), (26), and (27) reduce, respectively, to equations (26), (27), 
and (28) in [9] for the skew-s3'mmetrical local stress distributions. 

The transverse shear stresses, associated with the condition of 
vanishing tractions parallel to the surfaces of the plate, are 
obtained from equations (21), (23), and the remaining expression 
in equation (24). They are given by 

~ g T = 2(1 - C°S ( j + K l ° g r ) 

+ Kt sin + K log r^ J + . . . (29) 

(Tfa), e - « * - < > \ h S - m f T , . ( e \ 
= 2(1 - „ ) rV . [_* ' S ' n U + * b g 7 

~ = ( T T P Z . + V,) cos + k log r ) 

+ V\ sin 9 sin — k log r^ + [cos 8 + 2k(1 — vx) sin 9] 

X cos - k log + (3 + cos ^ ™ + K log r ^ 

< / e - « (»—»)|(2 + V l) sin + K log r^ 

( y - K l o e r ) 

- K~ cos + k log r^ J + . . . (30) 

— [cos 9 + 2k(1 — VI) sin 9] sin — K log r^ j-

+ (3 + sin + k log r ^ + . . . (26) 

(Tre)i 28K, . ( B \ 
~gT = ( i - vy/' v \Vi s i n + K l o g 7 - " ' s i n 0 

8 The complex constant A,N) in equation (23) may be determined in 
the usual way [1] from the prescribed boundary conditions of a par-
ticular problem. 

Differing from the in-plane bending and shear stresses shown in 
equations (25)-(27), equations (29) and (30) suggest a stronger 
stress singularity, of the order of r _ , / / | , for the transverse shear 
components. However, this point will be reserved for further 
discussions with reference to results based on the Reissner plate 
theory for the homogeneous case in the section to follow. 

Discussion of Results 
In order to study the local behavior of the bending stresses, it 

is convenient to rearrange them into the form 

0 ~ r~'^'[J(9) sin (k log r) + H(9) cos (k log r)] (31) 

where J and H are functions of 9 only. It is evident from equa-
tion (31) that the stresses will undergo a rapid reversal of sign as 
the origin is approached; i.e., r -»• 0. This highly oscillatory 
character of the stress will be shown to be confined to a very small 
region surrounding the end of the crack. For the purpose of il-
lustrating this fact, consider the extreme case of elastic-to-rigid 
connection, i.e., Ei —>• and assume vi = 0.3. Using equation 
(12), the bielastic constant, k, is —0.244. For the sake of 
definiteness, let the radial distance, r, be compared to some 
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planar dimension, c, of the initially flat plate in the form of the 
ratio, r/c. For instance, in the case of a finite crack in an infinite 
plate loaded uniformly at infinity, c would be the crack length. 

In the case of a semi-infinite crack in an infinite plate loaded 
with a concentrated couple on the crack surface, c would be the 
distance of the load, say from the crack point. Since K is negative, 
the bending stresses in equation (31) will remain unchanged in 
sign if the range, 0 < K log (r/c) < 7r/2, is observed. Thus, for 
values of r/c smaller than exp (%/2K) = 1.58 X 10~3, the bending 
stresses will begin to oscillate between positive and negative 
values. Now, bear in mind that equation (31) is only valid for 
those stresses in a small region surrounding the crack tip; i.e., for 
values of the ratio r/c small relative to unity. As r/c = 1.58 X 
10 ~3 is well within that order of magnitude, the region in which 
rapid oscillation occurs is indeed in close proximity to the end of 
the crack. Owing to these conditions, the stresses in the imme-
diate neighborhood of the crack front are seen to be of an oscillat-
ing nature with a singularity strength determined by r~ 1 / ! . In 
the same way, the transverse shear forces, Qr and Qe, can also be 
shown to oscillate and become infinite in the order of r ~ a s 
r —• 0. This singular behavior of Qr and Qe is true only in the 
Kirchhoff sense (i.e., the three free-edge conditions prescribing 
Me, Mre, and Qe have been contracted into two conditions). 

In contrast to this result, Knowles and Wang [11] have used 
a more refined theory due to Reissner for the homogeneous case, 
where all three conditions are satisfied individually, and found 
that the shear forces, Qr and Qe, are actually finite at the tip of a 
crack, while the inverse square-root of r characteristic for the in-
plane stresses is the same as that of the Kirchhoff small-deflection 
theory. Consequently, it is possible to define "bending stress-
intensity factors" for each of the two theories, i.e., the classical 
and Reissner, in such a way that the results are identical. In 
fact, for the symmetric and homogeneous case, Williams [12] 
has already pointed out the difference to be a factor of (1 + v)/(3 
+ v). Therefore, the small-deflection theory does preserve the 
character of the bending-stress radial decay around the crack tip. 
This alone is sufficient for the purpose of merely establishing a 
fracture criterion. 

Referring to the general forms of equations (25), (26;, and (27), 
the distribution of the bending stresses is seen to have the same 
functional form in r and 6 near the singular point of a crack be-
tween two dissimilar materials. They will, however, differ quan-
titatively from one problem to the next through the constants K, 
and Ii?, which are dependent upon the loads and a characteristic 
length, such as crack length or length of the bond line. 

According to the "Griffith-Irwin" theory of fracture, K, and /v2 

may be considered as stress-intensity factors that cause unstable 
crack extension upon reaching some critical values or combina-
tions. In the usual manner, they may be evaluated from the 
Goursat function [13] as follows: 

Jv, + Hi? = e" Lim 2 , / r H 'K0/(z) (32) 

Finally, it is interesting to observe an analogy between Wil-
liams' solution4 for the extensional case 

cot2 irX„ + -
4 

(i - p.) - a - !>,) 

i + 
K 
E? 

(33) 

and equation (10) for the bending ease 

cot2 7rX„ + 

1 E 

4 

Ei / l + p A / 3 + 
E? \1 + + vj 

FL + V?) - (1 + VI) 

E. 
l + E i \i + " . A 

3 + VI 

3 + v? 

= 0 (34) 

Both equations (33) and (34) have been rearranged to facilitate 
comparison. Since both problems are geometrically identical, the 
characteristic equations can also be made into a single generaliza-
tion upon observing that 

E j corresponds with const — 

vj corresponds with —Vj 

(35) 

(36) 

' Equation (16) in reference [5]. 

Though the last result was already observed by Southwell [14], 
to the best of the authors' knowledge, the correspondence of 
Young's modulus (determined within a constant) has not ap-
peared elsewhere. 

Note on the Extensional Solution 
In [5], Williams has shown that an oscillatory type of stress 

singularity exists at the tip of a crack along the interface between 
two dissimilar materials, which is subject to in-plane loads. With 
the aid of Kolosov-Muskhelishvili's stress combinations, his work 
may be extended to derive the crack-tip stress field. A short 
derivation is included in the Appendix. 
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A P P E N D I X 
Derivation of Extensional Stresses Near a Crack T i p 

Consider the extension of a bimaterial plate with a crack along 
the bond line as shown in Fig. 1. The Airy stress function for this 
problem is given by [51 

Ui = 2 Re Y h ?-X" + 1 [ai(n> sin (X„ 4 1)0 + &,<»> cos (X„ + 1)0 

where 

and 

a," 
. / 1 4 A „ e ~ 2 " \ 
l
\ x. + i )

( 

\ X„ + 1 J 

e = 2 x l 0 g 

(l + X) + G, 
( i + * . ) ( & ) + c, 

(39) 

where G, and G> are the shear moduli of elasticity for materials 1 
and 2, respectively. In the case of plane strain, replace vs by 
" , / a - = i , 2. 

Since V\ is biharmonic, equation (1; may be expressed in terms 
of two stress functions of the complex variable, z = x 4 iy; i.e., 

t/ , = R e [ # , ( z ) 4 X i («)l (40) 

It follows from equation (37) that the complex functions are 

0,(z) = 2 Y K n + i ) - *'«] (41) 
n = 1 

OO 
Xi(z) = 2e 2 r < z , / , + , ' < Y 

n = 1 

— 2«'/«-i« J 2 [(» - i ) - ie]S<">z" 
n = 1 

in which 
(X„ 4 1 )B<"> = 

Using the Kolosov-Muskhelishvili formulas 

(«rr)i + (o»)j = 4 Re[0, ' (z) ] 

(c«)i - ( O i + 2j(rr6), = 2e2''fl[z<£1"(z) + X i" (z)] 

the stresses near the crack tip are obtained by setting n = 1. 

+ 2 e sin 0 cos — e log / ^ — sin 0 sin ^ ^ — e log J 

+ c,<"> sin (X„ - 1)0 + d / " ' cos (X„ - 1)0] (37) 

X„ = (n - i) 4 « 

- cos 4 ( log r j | 

— sin 0 cos — e log r j — 2e sin 0 sin — e log r^ J 

- e ' f ' - f l sin ^ 4 e log + . . . (4 

^ ! « " « < — 4 £ l o g , ) (cf«)i = 2(2r) • 

(38) 

Cl(») = 
<*!<»> = e~2l"d^ 

are all complex constants. The bielastic constant for the plane 
stress case is 

— 2e sin 0 cos — e log 4 sin 0 sin ^ — — e log r*J J 

+ et(-*~e) cos 4 t log r^ j -

4 sin 0 cos — e log 4 2e sin 0 sin — e log r^ J 
4 e'<-*-e) sin + e log r^ + . . . (4 

— sin 0 cos ^ ~ — e log r^j — 2e sin 0 sin ^ — e log r ^ J 

+ sin 4 elog j ^ j 

— 2e sin 0 cos ^ — e log 4 sin 0 sin — e log r*JJ 

9) cos 4 e log r^j-4 e log r I f 4 . . . (45) 

where 

k = fci - t'fcz = 4 V 2 e e ; r ( | - J'e)(f - te)S<» (46) 

(42) 

When equations (43)-(45) are expressed in Cartesian coordinates, 
tliej7 are identical with equations (49)-(51) in [6], respectively, if 
e = —y, k1 — ikn = 2\ /2 (Ai 4 iA2). For e = 0, equations 
(43)-(45) reduce to the homogeneous solution in [15]. 

The stress-intensity factors ki and k2 are of special interest in 
fracture mechanics, since they govern the onset of rapid crack ex-
tension. As in the immediate vicinity of the crack tip 

*/(«) = (ki - (47) 

they may be evaluated from the complex function 4>\'{z) alone; 
i.e., 

h - ikn = 2 V 2 e" Lim <f>,'(z) (48) 
z—0 
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