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The Bending of Plates of Dissimilar 
Materials Willi Cracks1 

M. L. WILLIAMS.2 The authors are to be commended for com-
pleting an analysis of the companion bending problem for a 
cracked bimaterial plate. Inasmuch as they have also found 
occasion to complete, the extensional solution [5],3 it. is con-
venient to append for ready reference certain other remarks which 
apply to both solutions because their character is similar. 

The major remark relates to a more precise statement of the 
admissible eigenvalues. In the extensional paper [5), it was 
pointed out. that, there were two sets of (complex) solutions corre-
sponding to 

A„<» = (2n + l ) / 2 + i X / " and X,/2' = n + A/2' 

The first of these corresponds to those given by the authors in 
their equation (11) for the bending case. While it was stated in 
the extensional problem that for X/2> not to equal zero it would 
be the root of 
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1 B y G. C. Sih and J. R. Rice, published in the September, 1904, 
i s s u e o f t h e J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 3 1 . T R A N S . A S M E , 
vol. 86, Series E, pp. 477-4S2. 

2 Professor of Aeronautics, Firestone Flight Sciences Laboratory, 
Graduate Aeronautical Laboratories, California Institute of Tech -
nology, Pasadena, Calif. 

3 Numbers in brackets designate References in original paper. 

seven of the bimaterial constants can be determined in terms of 
the eighth, taken in their analysis as the complex constant cM"'. 
For the homogeneous material, one deduces quickly that a, = a?, 
bi = b-2, ci = c2, d, — d2 as one would expect, from requiring con-
tinuity. On the other hand, completing the calculation in(15), one 
finds 

— ( m : 
whereas beginning with equation (S) of the paper and making the 
calculation assuming X„(1) = (2n + l ) /2, (n = 0 , 1 , 2 , . . . ) , one 
finds only the requirement. 
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it can be shown that, the right-hand side is always less than unity, 
because of physical restrictions in the material properties, and 
hence this second set of complex eigenvalues cannot exist. How-
ever, as may be checked in the basic set of eight homogeneous 
equations, X„(2) = n{n = 0, 1, 2, . . .), i.e., real, does satisfy the 
matrix in a nontrivial fashion for the general bimaterial case. For 
example, in the extensional case, one quickly finds that 

(2) 
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The point to note is that there remain two independent sets of 
real constants, c2("> and rf2(n), leading to a second set of eigen-
solutions for F„(6) [or wn(6) in the bending case] in the form 

(5) 

which is the form of solution found for the homogeneous material 
case [15], and to which (v) reduces in the case of similar proper-
ties; i.e., k = 1, a*i = di. This form of solution, resulting from 
a real eigenvalue, does not produce the same trig-log character of 
singularity as the complex eigenvalue. The same argument 
applies to the bending solution for its second, interlaced set of 
eigenvalues. 

There is another interesting point, also common to both 
problems. The authors show in equation (15) of the paper that 

with no coupling between c and d. This latter solution produces 
the form given in (5) of this discussion which corresponds to the 
limit found in reference [9] of the paper. Whereas at first sight 
it. is not apparent, the form of solution obtained using the one 
unknown complex loading constant, d, in (6) of this discussion and 
separating the linearly independent real and imaginary parts is 
the same as that obtained from (7) because c and d are real. 

In conclusion, it should be emphasized that the character of the 
lowest mathematically admissible eigensolution is as reported by 
the authors; the amplification is related to the identification of 
the additional set of higher interlaced eigenfunctions frequently 
needed for a mathematically complete solution, and some re-
consideration of the loading constants for the limiting case of a 
homogeneous material. 

Authors' Closure 
Professor Williams' comments are well applied to this paper 

and are greatly appreciated by the authors. The additional set of 
eigenvalues consisting of X„<2) = n (n = 0, 1, 2, . . .) is indeed 
necessary for mathematical completeness, particularly for the 
formulation of crack problems involving finite regions. It. will be 
shown that this infinite number of real eigenvalues leads to a set 
of complex functions, holomorphic in the plane z = x + iy, with 
the possible exception of the point at infinity. For discussion 
purposes, let these functions be denoted by ej>im(z) and x / 2 ' ( z ) -
The behavior of (f>/l)(z) and x/2 ) (2) is determined by the stresses 
and/or displacements prescribed on the boundary of the region 
under consideration. In the case of an infinite region with a uni-
form state of stress at infinity, </>;(2,(z) may be at most a linear 
function of 2 and X/(2)(z) a quadratic function of z, as terms of 
higher order result in unbounded stresses as |z| —<*>. The co-
efficients of 2 in these functions are determined so that 4>j(z) = 
<*>/•>(«) + </>y<2>(z) and x,-(z) = X / " ( z ) + x / 2 ) (z ) (where (/>/», 
Xj(1)(z) are the Goursat functions given in the paper) satisfy the 
imposed uniform stress slate at infinity. Now, if the infinite 
region contains a semi-infinite crack such as the configuration in 
Fig. 1 of the paper, it is necessary that (j)/-)(z) and x / 2 ) (z ) result 
at most in a uniform normal stress state acting parallel to the 
crack plane which gives no singularity at the crack tip or branch 
cut along the crack line. Otherwise, no equilibrium may result, 
as the problem of an infinite elastic body with a semi-infinite 
crack subjected to any other uniform stress state has no stress 
solution that is bounded at finite distances from the crack tip. In 
this respect, the second set of eigenvalues does not contribute to 
the solution of the present problem. However, the authors agree 
with Professor Williams that, in general, the additional eigen-
values X„(2) should be included in the analysis for a mathe-
matically complete solution. 
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d i s c u s s i o n 

In order to be more specific, t lie Goursat. functions correspond-
ing to X„<2' in the case of plane extension may be obtained: 
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where n. = 0, 1, 2, . . . . Making use of equation (3), the Goursat 
functions which should be added to equation (23) of the paper 
are: 
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for the region y > 0. For the region ?/ < 0, the Goursat functions 
are of the form 

3 J. R . Rice and G. C. Sih, "P lane Problems of Cracks in Dissimilar 
Media , " A S M E Paper No . 6 5 — A P M - 4 ; see this issue of the 
JOURNAL, pp. 41S-423. 
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in which DM is a complex constant given by 

D M = 2 ? > ( V t A w « _ 
Gi \ij, + 1 / 

The subscripts 1 and 2 refer, respectively, to the materials on the 
upper and lower sides of the cracked bond line. In equation (2), 
Gj is the shear modulus, = (3 — Vj)/{ 1 + v,-) for plane stress 
and 3 — for plane strain, and Vj is the Poisson's ratio, where 
j = 1, 2. It should be pointed out that the Goursat functions in 
equations (1) and (2) correspond to a stress field free from singu-
larities at the crack site. It may be checked that the stresses are 
in fact zero oil the crack surface as well as along the bond line, 
i.e., the entire .r-axis. 

For a complete solution, equation (1) should be added to equa-
tion (41) in the paper. The same applies to equation (2). A 
complete solution to the problem of two bonded dissimilar planes 
with a finite crack on the dividing line is further elaborated by the 
authors ill another paper.3 There only the terms corresponding 
to n = 1 appear as the boundedness of the stresses, for large \z\ re-
quires that DM = DM = 0 for n > 2. The constant D<» is re-
lated to the applied stresses at infinity. 

In the same fashion, a second set of eigenvalues consisting of 
positive integers also arises in the plate bending problem of two 
dissimilar materials. Solving equation (8) in the paper for 
the constants a / n ) , b/"\ etc., in terms of the two independent real 
constants c-/n) and rf2(">, it is found that 

n 4- 1 

The complex constant C ("' is defined as 

CM = 2 ( [di<"> ~ "'2<":'! 

and fij(j = 1, 2) is given by equation (9) of the paper. Since 
equations (4) and (5) are power series of the same degree as those 
given by equations (1) and (2), the role of this second set of 
eigenvalues in a complete solution for the plate bending and the 
plane extensional problems is basically the same. 

As mentioned before, equations (4) and (5) are inconsequential 
to the physical problem described in the paper. To cite an ex-
ample, consider the problem of a semi-infinite crack between two 
bonded dissimilar materials. Concentrated couples M and N are 
applied to the crack surface at z = —a a.s it is shown in Fig. 1. 
The condition of vanishing stresses at infinity demands that C'M 
= 0 for all values of n. Hence, the complete solution to this 
problem is given by equation (23) of the paper. Moreover, by 
letting 

f(z) = 2 E [(» - i) ~ « ] [ ( « + i) -in] A'"V-1 (6) 
n = 9 

and 
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The complex functions $ , ( « ) and SIA(z) may be written in terms of 
f(z) alone, i.e., 
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for the lower half plane. The physical constants y and K are given 
by equations (9) and (12) in the paper, respectively. The un-
known function f(z) may be evaluated from the solution of the 
problem of a semi-infinite plate subjected to concentrated 
couples M and N on its edge. The plate occupies the upper half 
plane with material properties G, and vi. This is analogous to the 
Boussinesq solution in plane elasticity. In plate bending, the 
solution is 

~1 

E, ,V, 

E,.I>, 

Fig. 1 Concentrated couples on crack surface between two dissimilar 
materials 
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DISCUSSION 
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Knowing that in (he vicinity of the point z = —a the stress dis-
tribution derived from equation (7) must be of the same form as 
that obtained by equation (9), /(z) is found to be 

M = 
M - iN 

2ttD,(3 + vi) z + a 
a-i + ( H I ) 

Substituting equation (10) into equations (7) and (8) yields the 
Goursat functions from which the stresses and displacements 
throughout the two dissimilar materials can be computed. 

Briefly, the authors wish to conclude that the inclusion or ex-
clusion of the second set of eigenvalues X„(2) = n (n = 0, 1, 2, . . .) 
in the final solution of a given problem depends mainly upon the 
geometry and the external loading. The manner in which the 
eigenvalues X„<2> affect the solution in terms of the constants 
(?<"> (in bending) and 2)<"> (in extension) for two different groups 
of boundary-value problems can be outlined as follows: 

(A) Finite Regions 

The complex constants 

C<»>, n = 1 , 2 , . . . (Bending) 

and 

7F">, n = 1 , 2 , . . . (Extension) 

can be determined from the boundary values of the stresses 
and/or displacements. 

(B) Infinite Regions 

It is necessary that 

C<"> = C<"> = 0, n > 2 (Bending) 

and 

£>(»> = £>(»> = o, n > 2 (Extension) 

The nonzero constants C(1> and £><» are to be evaluated from the 
uniform stresses at infinity. For finite cracks, any arbitrary uni-
form stress state may be specified. In the case of semi-infinite 
•cracks, only a uniform state of normal stress acting parallel to the 
crack plane may be imposed for reasons stated earlier. 

U n s p m e t r i c Buckling of Thin 
Shallow Spherical Shel ls1 

R. R. PARMERTER.2 The author is to be congratulated for 
this apparently correct solution to the unsyminetrical buckling 
problem. It may be of interest to note that the Galerkin solu-
tion by Professor Y . C. Fung and myself (reference [9] of the 
paper) was subsequently refined by including higher-order asym-
metric modes and produced results in essential agreement with 
those of Huang for N = 1, 2, 3, 4. Because of the disagreement 
between these results and the results of Weinitschke (reference 
[10], Huang), we conducted a series of experiments with electro-
formed shells and carefully controlled boundary conditions. 

The Galerkin solution and the experimental results were pre-

1 By Nai-C'hien Huang, published in the September, 1904, issue 
o f t h e JOUHNAL OF A P P L I E D M E C H A N I C S , v o l . 3 1 , T R A N S . A S M E , v o l . 
8 6 , S e r i e s E , p p . 4 4 7 - 4 5 7 . 

2 Assistant Professor, Department of Aeronautics and Astronautics, 
University of Washington, Seattle, Wash. 

sented in the writer's PhD thesis at the California Institute of 
Technology, and later in reference [l].3 The experimental re-
sults are compared to Huang's theory in Fig. 1. Also included 
are the experimental results of Krenzke [2], 

The latter tests are of particular interest. The shells tested in 
[1] all satisfied the shallowness criterion rise/radius < 1/S. In 
addition, the shells had ratios of spherical radius/thickness be-
tween 750 and 4200. This specification is of considerable im-
portance as the membrane stress at buckling is inversely propor-
tional to this ratio. The membrane stress at buckling must be 
kept well below the yield stress of the material or the combined 
bending and membrane stress may invalidate the assumption of 
elastic behavior up to the initiation of buckling. The four shells 
tested in [2] for X > 8 (Fig. 1) all violate the shallowness assump-
tion, with segment angles up to 60 deg. In addition, the spherical 
radius/thickness ratio of the shells ranged from 75 to 210. Thus 
the membrane stresses at buckling are at least an order of magni-
tude greater than the stresses in [1], leaving some question that 
the shells were elastic up to the buckling load. 

It is extremely significant, therefore, that the buckling pres-
sures observed in [2] are adequately predicted by elastic, shallow 
shell theory. It appears that, at least with regard to buckling 
load, the shallowness criterion places an overly conservative 
limitation on the theory. 

It is also of interest that our experimental buckling loads exceed 
those predicted by Huang's theory for X > 13, although they are 
below the symmetrical buckling loads given by Budiansky. It 
is not known whether this is due to a consistent error in the ex-
periments or a failure of the unsyminetrical theory. The ques-
tion is presently under investigation. 

References 

1 R. R. Parmerter, "The Buckling of Clamped Shallow Spherical 
Shells Under Uniform Pressure," AF OSR 5362, Graduate Aero-
nautical Laboratories, California Institute of Technology, Pasadena, 
Calif., November, 1963. 

2 M. A. Krenzke and T. J. Kiernan, "Elastic Stability of Near 
Perfect Shallow Spherical Shells," AIAA Journal, December, 1963, 
p. 2855. 

Author's Closure 
The author appreciates very much the discussion by Prof. 

R. R. Parmerter to show the recent experimental results which 
support the author's theory for certain range of values of X. 

The discrepancy between numerical results due to Weinitschke 
and author is also clarified. In reference [3], Weinitschke points 
out that a hidden error is found in his machine program and 

3 Numbers in brackets designate References at end of Discussion 
and Closure. 
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