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STRESSING OF LOCKED PATCHES ALONG A CREEPING FAULT 

BY SIMON T. TSE, RENATA DMOWSKA, AND JAMES R. RICE 

ABSTRACT 

An analysis is presented of the stressing of locked patches along a fault zone 
which is creeping elsewhere. The model consists of strike-slip faulted elastic 
lithospheric plates loaded in a manner equivalent to imposition of a remotely 
uniform tectonic shear stress. The fault zone has an inhomogeneous strength 
distribution both depth-wise and along strike. It is modeled as being composed 
of locked patches and freely slipping parts treated as cracks. The solution is 
given with the use of the "line-spring" model which analyzes the problem by 
thickness-averaged plane stress theory for lithospheric plates which slip along a 
discontinuity cut at the plate boundary. As a boundary condition, thickness- 
averaged stress and slip at each local section along the cut was related to one 
another by the result of an antiplane strain analysis of slip for the crack or crack 
pair which describes the slipping and locked depth ranges at that section. The 
analysis indicates that the slip distribution along creeping parts of the fault, as 
well as the stress distribution along locked patches, depends strongly on the 
geometry of these zones. The model is used to examine stress concentrations 
associated with a slip-deficient seismic gap along strike and to study the effect 
of local irregularities in the margin of a locked region. 

It is also used to simulate slip and stressing processes associated with the 
creeping portion of the San Andreas fault in central California, between the 
presently locked zones of the great 1906 and 1857 ruptures, and to constrain the 
nature of an apparently locked zone at the southeastern end which ruptures in 
characteristic Parkfield earthquakes. Near-fault creep and broadscale displace- 
ment data along the fault since the 1966 Parkfield earthquake and inferences 
from seismicity distributions are used. Limitations of the modeling procedure at 
short spatial wavelengths prohibit an accurate description of the Parkfield locked 
patch, but results suggest that it may be localized and occupy a small fraction of 
area of the normal seismogenic zone. An effective remote stressing rate of order 
0.3 x 10 -s x shear modulus/yr is inferred, together with a less well constrained 
30 to 40 km lithospheric thickness, for consistency with the displacement data. 
Results enable estimates of stress accumulation along the locked 1857 rupture 
zone and the build-up of fracture energy release capability (of order 107 J/m = in 
150 yr) at its lower margin. 

INTRODUCTION 

The accommodation of plate motion along a simple plate boundary occurs usually 
in a nonuniform fashion. At sufficiently great depths, because of temperatures and 
pressures prevailing there, motion is accommodated by aseismic shear or by predom- 
inantly aseismic shear together with small earthquakes. At shallower depths corre- 
sponding to the seismogenic zone, lithospheric rocks behave in a more brittle 
manner. During all but a few moments of the seismic cycle, they do not slide at all, 
or do so very little in the form of small earthquakes, so that stress accumulates and 
is released in the form of large earthquakes. The aseismic deformation below the 
shallower slip-deficient zone may be presumed to concentrate stress onto that zone, 
most notably along its lower margin. Thus, gradual rupture is promoted along the 
margin of the slip-deficient zone, especially during the latter part of the earthquake 
cycle when high stresses have accumulated, thereby enabling the slipping region to 
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penetrate into that zone and further concentrate stress onto it until loss of equilib- 
rium occurs in the form of a large earthquake. 

A portion of plate boundary may also be slip-deficient relative to other segments 
of comparable depth at neighboring locations along strike. Thus, neighboring 
earthquakes transmit stress along strike onto the less slipped zones. Such nonuni- 
formity of slip along strike may be due to nonplanarity of the boundary as revealed 
by branches, bends, or en-echelon offsets of the fault trace, to irregularities along 
one of the plates (e.g., subducting seamounts), and to compositional variations. As 
a particular case, a shallow locked or slip-deficient region of plate boundary might 
be adjacent to another shallow region along strike which slips permanently (creeps) 
in a predominantly aseismic manner, thus leading to continuous stress concentra- 
tion at the border of the locked zone. 

We introduce here a simple quasi-static mechanical model which serves for 
analysis of some aspects of the stressing of locked patches along a strike-slip plate 
boundary during the earthquake cycle. In this way we are able to evaluate the effect 
of variations along strike of the geometry of such locked zones, and of the distri- 
butions of slip within them prior to locking (i.e., from previous earthquakes), on 
stress distributions over the locked regions and on deformations at the Earth's 
surface. Thus, the model provides a basis for linking seismicity distributions (stress- 
related) and geodetic observations to geometric characteristics of locked zones. We 
show a number of examples relating nonuniformity of locked-patch geometry and 
preslip to that of stress and surface deformation. Also, we apply the model to a part 
of the boundary between the North American and Pacific plates, namely the 
creeping portion of the San Andreas fault in Central California and the adjoining 
currently locked regions of the great 1857 and 1906 ruptures. Detailed modeling of 
the southern portion of the creeping region between Monarch Peak and Cholame 
is attempted in order to use geodetic and seismicity data to constrain the geometry 
of the locked zone which ruptures in characteristic Parkfield earthquakes, and thus 
to estimate stress accumulations there and in the adjacent region of the great 1857 
rupture. 

Our modeling is performed in a simple manner using a variant of the "line spring" 
procedure (Dmowska and Li, 1982; Li and Rice, 1983a, b). In the present work, we 
assume that during the time periods considered constant resistive shear stresses act 
on the base of the lithosphere near the plate margin and along slipping zones at the 
plate boundary. Hence, periods of active coupling to viscoelastic processes in the 
asthenosphere and to time-dependent down-dip slip resistance at the plate boundary 
are excluded. Such coupling is important in the postseismic period of rapid- 
redistribution of coseismic stress changes through such relaxation processes, and 
possibly also in a shorter time precursory period before a great earthquake [e.g., Li 
and Rice (1983a, b) explain that the comparatively rapid preinstability advance of 
slip into the locked zone would be resisted partly by short-time elastic response in 
the asthenosphere]. Here, we neglect changes in size of the locked regions due to 
advance of the slipping zones into them, although such advance is considered 
explicitly in the references cited and also in work by Stuart (1979a, b) and Stuart 
and Mavko (1979). Also, work based on the line spring procedure is more accurate 
the more gradually the geometry of locked zones varies along strike. This inability 
to resolve accurately at short spatial wavelengths along strike ultimately limits an 
accurate description by our procedure of the locked patch near Parkfield. 

Many investigators (Wesson et al., 1973; Bakun et al., 1980; Lay and Kanamori, 
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1981; Lindh and Boore, 1981; Dmowska and Li, 1982) have used this concept of 
locked patches to explain spatial and temporal variations of seismicity and slip rate 
along a plate boundary. Based on study along the central San Andreas fault, Wesson 
et  al. (1973) related seismically active areas with regions of steep gradients or low 
values of surface fault-slip rate. Bakun et  al. (1980) used rupture propagation 
directivity of precursory shocks and aftershock distributions to infer stuck patches 
along the Cienega Road section of the San Andreas fault. Relating the foreshocks 
and point of initiation of the main shock of the 1966 Parkfield earthquake to the 
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FIO. 1. (a) Elastic lithospheric plate containing boundary of strike-slip type. (b) Plate boundary 

consists of locked and slipping zones. 

geometric bend of the trace at the Parkfield region, and relating the en-echelon 
offset near the Cholame area to the stopping of the rupture, Lindh and Boore (1981) 
suggested a locked patch of 5 × 25 km centered on the 1966 aftershock zone. The 
above line of work implies that locked patch geometry is closely related to the slip 
rate distribution and seismicity pattern along a fault, but so far there are no direct 
attempts to link them together. 

MECHANICAL MODEL OF A STRIKE-SLIP FAULT 

The mechanical model as shown in Figure la considers the lithosphere as a 
linearly elastic isotropic plate of uniform thickness H containing a planar vertical 
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boundary of strike-slip type. The plate is subjected to remote loadings which would 
transmit a uniform shear force a ~ H  across the plate boundary per unit distance 
along strike, at least if the fault slip did not vary along strike. The top of the plate 
(Earth's surface) is free of shear stress, and we consider situations for which 
effectively constant resistive shear stresses act on the base of the plate at its contact 
with the asthenosphere, at least near the plate boundary, and also along all sliding 
portions of the vertical boundary. Hence, if we regard ~ as the loading which 
accumulates during some time period for which these resistive stresses are constant, 
we may analyze the stressing problem as that for a plate which is stress free at top 
and bottom and along sliding portions of the vertical boundary. 

Figure lb shows the longitudinal cross-section of the plate boundary (AA') which 
is assumed to consist of slipping and locked zones. In different circumstances, the 
boundary may have the form of: (i) an effectively locked shallow seismic gap zone 
of the first kind extending a long distance along strike; (ii) one or a few smaller 
nonslipping asperities within slipping or recently slipped surroundings on a fault 
plane; or (iii) a transition zone from a long-term creep slipping to a locked segment 
along strike. The San Juan Bautista and Parkfield ends of the creeping segment of 
the San Andreas fault are examples of the latter kind. The origin of the asperities 
or patches is generally thought to be due to geometric complexity and material 
inhomogeneity as mentioned previously. The locked patches are assumed to be fixed 
in position during the time period considered. Both elastic-brittle crack modeling 
by Li and Rice (1983a, b) and frictional slip modeling by Mavko (1984) and Tse 
and Rice (1984) suggest that this is an acceptable first approximation, in that 
during much of the earthquake cycle the boundary between the slipping and 
effectively locked regions changes little in position. 

As a whole, from an elastic-brittle crack mechanics point of view, the fault zone 
is regarded as a part-cracked section with variable crack depth and geometry in an 
infinite plate subjected to uniform remote shear stress loading a~. In general, this 
three-dimensional crack problem is not easily solved, but with the use of the line- 
spring procedure introduced by Rice and Levy (1972), an approximate solution 
becomes tractable. The line-spring model was introduced for the analysis of part- 
through surface cracks in tension-loaded elastic plates or shells [see, Parks e t  al. 

(1981), Parks (1981), and Delale and Ergodan (1982) for recent applications in that 
context]. Li and Rice (1983a, b) have applied the model to strike-slip ruptures in 
tectonic plates. 

The idea of the line-spring procedure is to reduce the complicated three-dimen- 
sional crack problem (Figure la) into two simple two-dimensional plane problems. 
The thickness averages of the stresses and displacements in the lithosphere will 
satisfy approximately elastic plane stress theory. Within this theory, the lithosphere 
may be represented as a two-dimensional plane, the x - y  plane as shown in Figure 
2a, and there is a line of (mode II) slip discontinuity along the x axis representing 
the fault trace. Recognizing that this model is linear and using dislocation theory, 
the thickness averaged shear stress a(x) is related to the thickness averaged slip 

(x) along y = 0 by (e.g., Li and Rice, 1983a) 

(1 + ~) ~ 1 3 6 ( x ' )  
d x '  (1) - -  .J_ a ( x )  = ~r~ 2~r t~ ~ x - x Ox '  

where tt and v are the shear modulus and Poisson's ratio, respectively. The integral 
term of equation (1) is the thickness-averaged stress response due to the presence 
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of a dislocation (slip gradient) distribution along some port ion the x axis. On the 
other  hand, the thickness-averaged slip 6 (x) at  the plate boundary can be regarded 
as a function of the thickness averaged stress z(x) there. As suggested by Figure 
2b, it is assumed within the model tha t  the local thickness-averaged slip and stress 
at a section at position x along strike are related to one another  just  as would be 
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FIO. 2. Line-spring procedure. (a) Stress transmission in lithospheric plate is modeled by two- 

dimensional plane stress for thickness averages of stress ~ and slip 6. (b) Local relation between a and 6 
at given section x along strike in (a) obtained by two-dimensional antiplane shear analysis for depth- 
wise configuration of slipping and locked zones at that section. Antiplane analysis is presented in the 
Appendix. 

predicted by a two-dimensional  ant iplane strain analysis of mode III slip, based on 
a depth variation of locked regions appropriate to the section at position x. 

When  all port ions of boundary  are regarded as being ei ther completely locked or 
freely slipping, as in the present  work, this relation is a(x) = k(x)5(x),  where k(x) 
is a proport ional i ty  cons tant  (the line-spring stiffness). It  depends on the fault  zone 
geometry at x, and we derive its value in the Appendix, equation (A14), by solving 
the mode III crack problem depicted in Figure 2b 

k(x) = ln~2 + cos . --if- (2) 



714 SIMON T. TSE, RENATA DMOWSKA, AND JAMES R. RICE 
Here, a(x) and b(x) are crack depths at x such that the locked patch extends from 
z = b to z = H - a. Therefore, equations (1) and (2) constitute a full formulation 
for the thickness-averaged stress and slip for a general fault zone geometry. Once 
z(x) is determined by solution, quantities like local shear stress rxy within the 
locked patches, surface slip and surface strain near the fault trace, and crack tip 
stress intensities and energy release rates can be found immediately. Formulas are 

given in the Appendix and involve the unknown z(x) times known functions of 
a(x), b(x), and depth z or distance y from the fault trace, as appropriate. 

For numerical solution, the indefinite integral term in equation (1) can be reduced 
to a definite integral over a finite interval as follows. It will generally be appropriate 
to assume that at great distances, denoted by [ x [ > L, from the fault zone considered, 
the plate boundary is locked from the Earth's surface to a certain uniform depth, 
H - a~, and if L is chosen large enough, the thickness-averaged stress will be 
effectively constant at a~ and the thickness average slip effectively constant at 5~ 
= a~/k~ at distances for which Ix[ > L. Here, k~ is calculated from equation (2) 
with b = 0, a = a~. Hence, the indefinite integral term in equation (1) can be 
rewritten as 

~ ( 1 + . ) / ' ~  1 06(x') 
dx'  

27r J-~ X-- X' OX' 
_ M I + v ) {  G 8® ? 1 0 5 ( X ' ) . , ]  

2 .  x -  L x + L + L ~ ~x; ax ~. (3) 

Equivalently, the first and second terms on the right-hand side of equation (3) can 
be interpreted as the stress responses at x due to dislocations in thickness-averaged 
slip of magnitude 5~ at +L and -L ,  respectively. Combining equations (1), (2), and 
(3) gives 

k(x)5(x).~tt(l+g) ~_L 1 0~(X') [ #(1+ v) ( ~ _  X2) ] 
27r ,J L X - - ~  OX" d x ' = a ~  14 ~rk~ . (4) 

Once remote stress a~ and a particular distribution of locked and slipping zones 
are specified [i.e., a(x) and b(x) are given so that k(x) can be determined], the 
thickness-averaged slip 5(x) is readily solved from equation (4). The integral term 
in equation (4) is approximated by the following discretization: the length 2L is 
divided into n(200 to 300) intervals of equal length, in each of which 5 is given some 
unknown but uniform value, and we require that the equation be satisfied exactly 
for the x values at the mid-points of the intervals. This procedure reduces equations 
(4) into a set of n linear equations with n unknown 5's, solved by standard 
procedures. 

The line-spring model as formulated is plainly more accurate in representing the 
actual three-dimensional situation the more gradually the crack depths a(x) and 
b(x) change with distance x along strike. For accuracy, one would prefer that 
parameters like (H/a)da/dx or H/f,, were E is a characteristic scale length along 
strike, be small compared to unity. Nevertheless, comparisons of model predictions 
of stress intensity factors for semi-elliptical surface cracks in tension-loaded plates, 
in the references cited above, with three-dimensional numerical elastic solutions 
suggest that the model remains quite accurate even when the above condition is 
widely violated, e.g., when the surface length of the crack is of order of plate 
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thickness. This provides encouragement in applying the model to some of the cases 
presented here, although a particular application of the model to be discussed for 
the Parkfield area is limited by this inadequacy at short spatial wavelengths along 
strike. 

In some cases, we are concerned with locked regions which have a nonuniform 
distribution of previous slip along strike. For example, suppose that at section x 
along strike the presently locked portion of plate boundary between z = b(x) and H 
- a (x) has average slip D (x). Then for the thickness-averaged slip 5, we would have 
5 = D(x)  if that section of boundary were cut free from the surrounding plates. 
However, the actual interaction with these plates results in transmission of a 
thickness-averged stress a(x) at x, and therefore we have to use 5(x) = D(x)  + 
a (x ) / k (x )  for the thickness-averaged slip at x. When this expression is used to 
replace a(x) in equation (1), we obtain an identical integral equation to that 
described earlier, except that the forcing term ~ is replaced by a~ + k(x)D(x) .  The 
indefinite integral is reduced to one over a finite interval for numerical solution by 
a procedure analogous to that described earlier, but using &~ = Doo + ~ / k ~  for [ x [ 
> L. Here D~ is the value of D(x) ,  assumed constant, at great distances from the 
region of interest. 

STRESSING OF LOCKED PATCHES 

We show some representative results here. First consider a boundary (Figure 3) 
which is locked over the upper third of the plate thickness and slipping below, but 
with small nonuniformities of the locked zone margin. In the case shown, these 
have the form of bell-shaped Gaussian variations of a(x) from its average value 
2H/3. The maximum amplitude of the disturbances is one-third the locked zone 
thickness (i.e., H/9), and the width 2s of the bell shapes along strike is HI4, where 
s is the variance of the Gaussian. Here, there is no nonuniformity of preslip (D = 
0), and loading is by a uniform thickness-averaged stress a~. 

Figure 3 shows the result for b (x) obtained by numerical solution and from it one 
computes the thickness-averaged stress a(x) = k(x)5(x).  Both of these mirror the 
original nonuniformity, the stress more markedly so. Note that the average stress 
over the locked zone depth is a H / ( H  - a) and is less sharply peaked than is a. The 
actual local distribution of stress ~xy within the locked zone could be computed in 
terms of a(x) and a(x) from equation (A15). It is strongly concentrated toward the 
margin of the locked zone, which is a crack tip (Figure 2b). A measure of the crack 
tip stress concentration is provided by the energy G that would flow to the crack 
tip per unit area of advance of the slipping region into the locked region [see, 
equation (A21)], and the procedure for calculating G is explained in the Appendix. 
Results obtained from the distributions of ¢(x) and a(x) by use of equations (A16) 
and (A18) or, equivalently, equation (A23) are shown in Figure 3. G is largest where 
the deep locking at the center of the figure has impeded slip and concentrated 
stress. It is smallest at the locations of shallow locking, which provide compliant 
portions of plate boundary and shield themselves from stress. Nevertheless, it is 
interesting t h a t  G and, less strikingly, ~ show modest peaks to the sides of the 
regions of shallow locking (analogous valleys occur .to the sides of the deep locking). 
If we regard the shallow locking as the result of moderate earthquakes, which have 
converted a previously locked zone into a slipping zone, then the adjoining peaks in 
G suggest a tendency for further seismicity to occur preferentially at adjacent 
locations. 
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As a second example, we consider in Figure 4 more drastic perturbations of the 
locked zone. We may interpret what is shown there as a simple model for a stretch 
of plate boundary where regions of two comparatively recent great earthquakes 
surround an area which has not slipped for a long time, i.e., a seismic gap of the 
first kind. In the present discussion, we treat the regions of recent earthquakes as 
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FIG. 3, Effects of local nonuniformities in depth of a locked zone over upper third of plate thickness; 
free slip is below. Loading is by thickness-averaged remote stress a~. See text for details. 

completely destressed although, because of healing processes, they probably are able 
to carry some stress a short time later. We consider the area of the seismic gap as 
a slip-deficient, completely locked region although minor small seismicity in this 
area might allow some accommodation of plate motions, i.e., some slip. Also, we 
assume that below the locked zone, the motion between the two plates is accom- 
modated by stable, free sliding. The resulting solution for ~ is shown for uniform 
remote thickness-averaged stressing by am. 
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The thickness-averaged stress distribution in the region of the seismic gap and 
variation of energy release rate along the lower edge of the locked patch are also 
shown in Figure 4 [from equations (A24) and (A25) the average value of G along 
the vertical edges of the locked path is 0.44 of the peak values shown, or about 1.2 
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FIG. 4. Simulation of seismic gap by freely slipping zones to the sides of (and below) a locked patch, 
with loading by thickness-averaged remote stress ~r®. 

times the minimum value at the center of the patch]. High stress concentrations 
exist at the ends of the slip-deficient patch, and the stresses diminish toward the 
center of that region. 

Relaxing a little our assumptions that areas on both sides of a locked patch (i.e., 
areas of recent great earthquakes along the plate boundary) carry no stress and 
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allowing them to carry some stress, and also allowing some slip in the area of the 
locked patch itself, would not change qualitatively our results which show the 
highest stresses at both ends of the locked zone and, also, additional stress concen- 
trations associated with complexities of asperity structure (Figure 3). Following the 
model of Dmowska and Li (1982), for such seismic gaps, we interpret these regions 
of higher stresses as areas responsible for higher seismicity, as often observed in 
seismicity gaps of the first kind along plate boundaries (see, e.g., Kelleher et al., 
1973; Kelleher and Savino, 1975; Mogi, 1979). Regions of higher stress are also sites 
of nucleation of great ruptures (Dmowska and Li, 1982). In most cases of great 
earthquakes, the rupture starts near one end of the gap zone and runs toward the 
other (see, e.g, Kelleher and Savino, 1975); exceptionally, it starts somewhere in 
the gap area and develops bilaterally. In the light of our modeling, the latter 
behavior might be caused by more complex asperity structure (e.g., two or more 
asperities close to each other). 

Figure 5 shows another approach within our modeling procedure for analyzing a 
seismic gap of the first kind. As in a discussion of the Dmowska and Li model by 
Rice (1983), we assume that the effect of neighboring earthquakes is to slip and 
relock the shallow seismogenic zone, and that after relatively short-time postseismic 
adjustments, a stable freely slipping response continues below. This is a case of 
nonuniform pre-slip of the locked zone as discussed at the end of the previous 
section. Three distributions for the preslip dislocation D (x) are shown. Case (a) has 
an abrupt change from zero to Dmax, whereas cases (b) and (c) have exponential 
approach, with respective 1/e decay lengths of HI5 and HI2, to D . . . .  Here, the slip- 
deficient gap zone has length 3H. We show only the right half of all figures, which 
are symmetric about the center line. Also, we neglect the effect of remote stress ~ 
and show only the effect of the nonuniform preslip. 

The results for thickness-averaged slip 6 in Figure 5 are seen to be smoother 
versions of the preslip D. Also, the adjacent preslip induces some thickness-averaged 
slip along the gap zone, due to slip that has been induced below the completely 
locked patch. The resulting stresses are also shown, and their distribution is 
consistent with the tendencies for higher seismicity and rupture nucleation at the 
ends of a gap as discussed earlier. 

MODEL OF CREEPING SECTION OF SAN ANDREAS FAULT NEAR PARKFIELD 

In this section, we use our procedures to suggest possible geometries and stress 
distributions for locked regions along and adjacent to the creeping section of the 
San Andreas fault in central California (Figure 6). We are interested here particu- 
larly in the configuration (and stress distribution) of such patches during most of 
the cycle of Parkfield characteristic earthquakes. We omit the part of the cycle 
which follows the earthquakes and is characterized by afterslip effects associated 
with comparatively rapid stress redistribution after the earthquake, and, also, we 
omit the last part  of the cycle, preceding the earthquake, possibly characterized by 
accelerating slip and leading to the earthquake itself. To deal with these phases we 
would, according to the estimates of Li and Rice (1983b), have to include coupling 
to the asthenosphere and to examine the advance of slip zones into locked patches, 
and perhaps also revise the assumption of slip at constant resistive stress. Parkfield 
earthquakes recur with the interval of about 21 yr for the last 6 events (Bakun and 
McEvilly, 1984; Stuart et al., 1985), apart from the one decade earlier 1934 event, 
so we are studying here perhaps the middle 16- to 18-yr period of a representative 
cycle. We also assume in our calculations that there is an approximately constant 
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configuration is shown with coordinate origin at the center line. 

distribution in space and time of locked patches along the fault for the period of 
our slip and stress simulation, although seismicity near Parkfield shows a tendency 
for migration which we will discuss further. To assess this distribution, we take into 
account the surface slip distribution as measured along the fault since the last 
(1966) Parkfield earthquake, as well as seismicity patterns in this area, and source 
studies of the 1966 Parkfield earthquake. 

Figure 7 shows the long-term slip rate distribution along the fault between 1966 
and 1980 taken from near fault (10 to 100 m), intermediate-scale (1 to 2 kin) and 
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broadscale (10 km and over) measurements. The near-fault measurements include 
data from Burford and Harsh (1980) based on alignment arrays from 1966 to 1978 
and data from Schulz et  al. (1982) based on creepmeters from 1968 to 1980. The 
intermediate-scale measurements are reported by Lisowski and Prescott (1981) 
based on a short-range network from 1975 to 1979. Lisowski and Prescott also 
report the broadscale measurements based on a Geodolite network and assuming 
simple block motion from 1969 to 1978. The range along strike and error intervals 
are indicated for the broadscale measurements. The near-fault and intermediate- 
scale measurements are in close agreement except at Monarch Peak where the latter 
is considerably higher than that inferred from near fault measurement. This 
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FIG. 6. Creeping section of the San Andreas fault (after Burford and Harsh. 1980). 

indicates that the zone of active deformation is confined to a narrow width of less 
than 200 m (Burford and Harsh, 1980; Lisowski and Prescott, 1981). Rymer e t  al. 
(1984) point out that the excess of slip rate recorded by the short range (interme- 
diate-scale) network over near-fault measurement at Monarch Peak is due to the 
additional contribution from the subsidiary faults in the region. The measured slip 
rate increases with the perpendicular distance from the fault trace, i.e., the near- 
fault measurements are the lowest, and the broadscale measurements are the 
highest. Within the mechanical model proposed in this paper, this trend of increase 
of surface slip rate with distance away from fault trace can be seen from equation 
(All).  There are large discrepancies in slip rates between broadscale and near-fault 
measurements in the northwestern end of the creeping section. Lisowski and 
Prescott (1981) explain that the broadscale geodolite network which covered a 20- 
kin-wide deformation zone could pick up additional displacement due to the nearby 
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Calaveras fault. There seems also to be a trend of moderately larger broadscale 
measurements near Parkfield where the array measures over approximately a 10 
km distance measured perpendicular to the fault. This provides a constraint on the 
ratio of displacement rates at _+5 km from the fault to those at the fault trace. The 
ratio would be approximately unity (except near the ends of the creeping zone), for 
example, if the creeping section penetrated through the entire lithospheric thickness 
without locked patches. 

Following Burford and Harsh (1980), Figure 6, the 180-km-long creeping section 
of the San Andreas fault may be divided into three subsections: (1) a 80-kin-long 
northwestern section from San Juan Bautista to Bitterwater; (2) a 55-km-long 
central section from Bitterwater to Slack Canyon; and (3) a 45-km-long southeast 
section from Slack Canyon to a few kilometers southeast of Cholame. Both Burford 
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and Harsh (1980) and Schulz e t  al. (1982) report that steady-state creeping is 
observed in the central section except for the area around Monarch Peak which 
shows occasional small shocks. The two sections flanking the central section are 
characterized by regional decreases in creep rates outward toward the limits of 
surface ruptures associated with the great 1857 and 1906 earthquakes. These two 
sections also show relatively high levels of minor seismicity and occasional moderate 
earthquakes while the regions corresponding to great rupture have shown neither 
creep nor seismic activity since the last ruptures. It is also pointed out by Wesson 
e t  al, (1973) that areas of steep gradients or relatively low values of creep rate are 
usually underlain by patches characterized by relatively high seismicity. Hence, 
there seems to be a general presumption that the central section can be regarded as 
a freely slipping zone while the two flanking sections are slipping-to-locked transi- 
tion zones with local locked patches that rupture in moderate earthquakes. The 
positions and depth of these patches are further constrained by seismicity patterns 
along the fault. 
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Figure 8 from Wesson et  al. (1977) and Burford and Harsh (1980) shows the 
epicenters of minor earthquakes during the period 1969 to 1976. It is seen that the 
seismically active areas correspond closely to the areas of steep gradient of creep 
rate or relatively low creep rate as mentioned above. The depths of earthquakes are 
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Concentrated between 3 and 12 km. No earthquakes below 15 km are found (Eaton 
et al., 1970; Wesson et al., 1973). For simplicity and with the notion that the detail 
of the patch geometry at one end does not affect very much that at the other end, 
the San Andreas fault is taken to be symmetric about Monarch Peak, and we 
concentrate only on the patch geometries in the Parkfield-Cholame section. 
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Figure 9 from Kerr (1984), who credits A. Lindh as its source, shows seismicity 
distributions near the 1966 Parkfield focus in different time intervals. If it is 
reasonable to regard such seismicity as a sign of stress concentrations near the 
border of the locked zone as we have discussed earlier, and if that same kind of 
stress concentration led to the 1966 foreshock and main shock, then we would have 
to regard the locked region as extending to depths of order to 10 to 12 km, at least 
near Parkfield. This is further supported by results of O'Neill (1984) who shows 
that earthquakes of moderate stress drop occur in that depth range, and by the limit 
at around 10 km to aftershocks of the 1966 event (Figure 9). 

The situation is as follows: since there are earthquakes which nucleate in the 
vicinity of Parkfield and propagate to the southeast, and since the area is seismically 
active (Figure 8), we assume that there is a locked patch near Parkfield extending 
at least somewhat to the southeast. Since surface creep is observed along the fault 
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FIG. 9. Seismicity during recent time periods near Parkfield, in the vicinity of the nucleation site for 
the 1966 main shock (after Kerr, 1984; based on A. Lindh as source). 

trace around Parkfield and to the southeast toward Cholame, we observe that this 
patch cannot extend to the surface there, but  must extend to the surface to the 
south along the main part of the 1857 rupture where there is no measured creep. 
The northwestern end of the inferred patch corresponds roughly to the 5 ° bend of 
the fault trace near Parkfield (Segall and Pollard, 1980; Lindh and Boore, 1981). 
The limit to its southeastern end is at the right-stepping offset near Cholame. In 
order to further constrain the patch geometry, as well as the appropriate lithospheric 
thickness H and remote stress rate ~ for the region, we wish to fit the measured 
slip rate along the fault trace taking cognizance also of: (1) broadscale geodetic 
measurements at the fault trace near Parkfield, as in Figure 7 and (2) depths of 
seismicity, as in Figure 9. Unfortunately, we find that items (1) and (2) lead to 
rather different fits when applied to the geometry of locked zones shown in Figures 
10 to 12, and we are reluctant to attempt further refinement of the geometrical 
structure of the locked zone along strike owing to inadequacies of our calculation 
procedure, especially for surface slip, at short spatial wavelengths along strike. 
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We first present the results which are responsive either to item (2) or (1) above 
and then discuss their interpretation more fully at the end of this section. In all 
cases shown, we have used a model (Figures 10 to 12) which is symmetric about 
Monarch Peak, has a freely slipping zone over the entire plate thickness for 35 km 
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displacements at +_.5 km) are underpredicted. Resulting stress rates and inferred #® are also shown. 

southeast along the fault trace from Monarch Peak, has a submerged locked patch 
of parameters b, ap beginning near the 1966 Parkfield epicenter and extending over 
the next 35 km southeast (i.e., from about 12 km northwest to 23 km southeast of 
Parkfield), and has a locked patch with b = 0 and a = a~ further to the southeast 
along the 1857 break. 
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In Figure 10 we have chosen H - ap = H - a= = 12 km from depth of seismicity 
considerations, item (2) above, and find b = 5 km, H = 35 km, and &=/# = 0.32 x 
10-6/yr give reasonable fits for all but the broadscale measurements near Parkfield. 
Recall that the near-fault data at the origin, i.e., in the vicinity of Monarch Peak, 
should be disregarded for the reason noted earlier. The slip and stress rate curves 
scale directly with remote stress rate, and the value quoted corresponds to a= = 0.1 
bar/yr (0.01 MPa/yr) if/~ = 30 GPa. The fit is not significantly different for H - a 
= 10 or 15 km, with all other parameters the same. Also, H values from 30 to 40 
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kin, with other parameters as given in the figure, provide comparably good fits. The 
most sensitive parameter seems to be b. Changing b to 4 kin, for example, noticeably 
alters the fit above the locked patch, again, with other parameters as given. Figure 
11 shows results for slip along the fault trace with various choices of parameters for 
the model with H - ap = H - a~. 

Let us now consider how the various curves in Figure 10 are calculated. The 
dashed and dotted curve there is the thickness-averaged slip 5, calculated by our 
modeling procedure, but this cannot be compared directly to measured data. The 
dashed curve in Figure 10 (and all curves in Figure 11) are slip at the fault trace. 
We equate this to zero when there is locking to the surface, to 5 when there is no 
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locked patch, and to the value calculated in terms of the stress a by equation (A12) 
of the antiplane shear analysis when there is a submerged locked patch. It is clear 
that these last two procedures are accurate well away from transitions in locked 
zone geometry but not near to such transitions. Indeed, they lead to prediction of a 
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discontinuous surface slip, as in the figure, at the points of transition in locked zone 
geometry, whereas the actual surface slip must obviously be continuous. Similarly, 
the surface slip at +_5 km, for comparison with the broadscale measurements, is 
shown by the solid curve in Figure 10 and is calculated as 5 when there is no locked 
patch and from equation (All)  of the antiplane analysis (as twice the value for 
y = 5 km) when there is a locked patch. This too is inaccurate near transitions. 
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Thus, the short spatial wavelength inaccuracies inherent to our simple modeling 
procedure, which are evidently quite pronounced for predictions of surface slip, 
would seem to mitigate against any further refinement along strike in the locked 
patch geometry. This is evidently a subject for legitimately three-dimensional stress 
analysis, as in recent work by Stuart et al. (1985) discussed again subsequently. On 
the other hand, our inferred stressing rate h~, range for lithosphere thickness H, 
and stress shed from the creeping section to the 1857 rupture zone are presumably 
more reliable. 

Finally, we show in Figure 12 a fit within the constraints of our segmentation 
into a 35 km locked strip which more accurately responds to item (1), i.e., to fitting 
the ratio of broadscale to near-fault slip rate measurements near Parkfield. This 
gives a locked zone between b(= 2.5 km) and H - ap of only 0.5 km thickness, and 
the fit of item (1) is seriously degraded by increase of locked zone thickness or by 
lowering the patch. Thus, this fit seems implausible from the standpoint of item 
(2), i.e., depth of seismicity. Nevertheless, it is interesting that this very different 
geometry leads to a similar inferred value for ~=/~ (now 0.28 × 10-6/yr) to that of 
Figure 10, whereas the stressing rate at the edge of the 1857 rupture zone is now 50 
per cent higher. 

DISCUSSION 

One may interpret the fit in Figure 12, demanded by item (1), as suggesting that 
a small total area of plate boundary is actually locked near Parkfield. Although the 
geometry of such a small locked zone cannot be constrained accurately by our 
procedures for the reasons discussed, we suspect on the basis of item (2) that such 
a patch must extend near Park field at least to the nucleation depth around 9 km 
for the 1966 shock. These requirements argue for a somewhat localized locked patch 
near Parkfield, and such seems consistent with the work of others. For example, 
Aki (1979) suggested that the 1966 shock involved rupture of a strong localized 
barrier, after which the rupture propagated into a region with little strength until 
arresting at a stopping barrier. [By contrast, Lindh and Boore (1981) seem to argue 
for a strong locked patch somewhat similar in dimensions but a little shorter than 
what we showed in Figure 10, terminating at the Gold Hill en-echelon offsets.] 

Also, Stuart et al. (1985) have recently used three-dimensional elasticity calcula- 
tions, together with a slip weakening failure model, to simulate near and broadscale 
slip as measured in the Parkfield area. They obtain reasonable fits to the available 
geodetic data by a model that has a small slip-deficient patch of approximately 3 
km diameter near Parkfield together with a nonslipping rectangular lobe that 
protrudes 10 km northwestward, between approximately 2 and 8 km depth, from 
the 12-km-deep locked zone of the great 1857 rupture. They too have problems in 
reconciling the geodetically constrained model with seismicity and must place their 
small slip-deficient patch approximately 7 km southeast from, and 2 km shallower 
than, the 1966 focus. Also, the calculations of Stuart et al. (1985), while three- 
dimensional, are done for an elastic half-space with a rectangular slipping zone 
(interrupted by locked or slip-deficient regions) extending vertically downwards by 
54 km and along strike by 180 km. Their termination of slip at depth and elastic 
coupling to the remainder of the half-space (compared to our decoupled plate) are 
presumably the reasons for their inference of a remote stressing rate d~l# = 0.37 × 
10-~/yr which is somewhat higher (by about 30 per cent) than our estimate from 
Figure 12. 

The inference of a small locked area near Parkfield is dictated by the difference 
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between the broadscale and near-fault slip rate measurements, Figures 7, 10, and 
12, as interpreted within a model for which the adjoining plate is ideally elastic. 
However, there are stress concentrations near the ends of the creeping sections, 
which are like megascale crack tips, and it is possible that the broadscale measure- 
ments have to some extent been affected by nonelastic response in that concentrated 
stress field. Unfortunately, we do not have knowledge of subsidiary faults in support 
of this possibility and have no reliable means at present for evaluating how much 
it could change the conclusions drawn. In calculations which we do not show here, 
we have also examined the effect of slow upward motion of the lower border of the 
submerged locked segment in Figures 10 to 12 during the time period of the slip 
rate measurements. This idea is supported by seismicity migration shown in Figure 
9, and it does result in the inference of somewhat larger locked zone areas than in 
Figure 12, but we were unable to obtain a reasonable fit with the lower boundary of 
the submerged locked segment remaining below 8 to 10 km, as would seem to be 
required by Figure 9. Again, this failure to find a suitable fit is to be understood in 
the context of the 35 km rectangular segment that we use owing to short-wavelength 
limitations of our model. 

On the repeat time scale of order 150 yr for earthquakes such as the great 1857 
rupture, Parkfield events might be considered as transients in what averages to 
steady fault creep. For such time scales, it is appropriate to eliminate the submerged 
locked patch near Parkfield, and the result is shown in Figure 13 (using H - a~ = 
12 km). In that figure, we have adjusted the stress, rate b~ to make the predicted 
surface slip rate curve agree with measured rates in the middle of the presently 
creeping section. However, it might be thought somewhat more appropriate to use 
the same stress rate as inferred in Figure 12, in which case the predicted slip rate 
curves in Figure 13 should be elevated by about 35 per cent. 

The results for slip rate in Figure 13, when compared to the data, also serve to 
show the need for some sort of locked zone near Parkfield in order to fit the 
measured slip rates since 1966. We have not been able to resolve the detailed 
geometry of this zone, but assuming its absence as in Figure 13 results in a significant 
overprediction of slip rate toward the end of the creeping section of the fault. 

The difference between the slip rates of Figure 13 and of Figures 12 or 10, 
multiplied by a 21 yr Parkfield repeat time, provides an estimate of how much 
additional slip (short-time preseismic, coseismic, and transient postseismic) is 
associated with a characteristic Parkfield rupture. The difference in surface slip 
inferred in this way from Figures 13 and 12 is approximately 0.3 m at the center of 
the locked patch, whereas Lindh and Boore (1981), citing data from R. D. Brown 
and J. D. Vedder, infer from offsets of geological and cultural features that total 
surface slip (including after-slip) reached approximately 0.2 m at points near the 
center of the fault break. The full predicted difference in slip should be realized 
only when the asthenosphere has time to relax again to the essentially uncoupled 
state that we have assumed. This involves a time scale which could possibly overlap 
with or be longer than the Park field repeat time, in which case the differences 
between Figures 13 and 12 or 10 as discussed cannot be given such a simple 
interpretation. Subject to the same uncertainties regarding h~ and asthenosphere 
relaxation times, differences between Figures 13 and 12 or 10 in stress rates along 
the 1857 rupture zone, multiplied by a 21 yr repeat time, also provide a measure of 
how much additional stress is transferred onto the 1857 zone by a rupture at 
Parkfield. 
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The stress rates in Figure 13, when multiplied by a 150 yr repeat time, can be 
used to estimate the total stress build up between events like the great 1857 rupture. 
Thus, the accumulated thickness-averaged stress a, averaged also along strike over 
the first 10 km southeast from the start of the 12 km deep locked patch that 
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remains, is found in this way to be approximately 23 bars (2.3 MPa), if # = 30 GPa. 
This amounts to 66 bars (23 × 35/12) if actually averaged over the 12 km locked 
zone. Using formulas in the Appendix, the stress accumulation results in an 
accumulated energy release rate G of about 1.0 × 107 J /m 2 along the lower margin 
of the locked patch. This is generally consistent with the representative values of 
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4 × 106 J /m  2 to within a factor of 2 or so cited by Li and Rice (1983a) for large 
plate boundary ruptures, and also with the specific estimate of 4 x 106 J / m  2 for the 
1857 rupture by Rudnicki (1980). 

CONCLUSIONS 

In summary, we have demonstrated the use of a simple mechanical model to 
describe stressing of locked patches along a creeping fault. Stress was seen to be 
concentrated toward the ends and lower borders of locked zones and to diminish 
toward their interiors. The high stress concentrations at the ends of the locked 
zones are interpreted as the cause for the high prerupture seismicity (Dmowska and 
Li, 1982) in the case of seismic gaps, and for the tendency of a gap-filling rupture 
to start low in the gap at one end and propagate toward the other. 

Using measured slip rates and seismicity patterns along the creeping central 
portion of the San Andreas fault, we further used the model to infer that there is a 
submerged transitional lo~ked zone near the Parkfield joining the completely 
slipping central segment to the northwest and the 1857 rupture zone to the 
southeast, the latter being currently locked over the seismogenic depth range. 
Limitations to our modeling procedure prohibit an accurate description of the 
transition zone geometry, but results suggest that it occupies a relatively small 
fraction of the area of the normal seismogenic depth range near Parkfield. Our 
results suggest effective remote stressing rates &~ of order 0.3 x 10 -6 ~/yr, and a 
less well-constrained lithospheric thickness H of 30 to 40 kin, for consistency with 
the slip rate data. 

Stress accumulation has been inferred for the locked 1857 rupture zone, and an 
accumulation of fracture energy release capability of order 107 J / m  2 in 150 yr is 
indicated along the lower margin of that zone, near its northwestern end. 
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APPENDIX 

U s i n g  a n a l y t i c  f u n c t i o n  t h e o r y  in  t w o - d i m e n s i o n a l  l i n e a r  e l a s t i c i ty ,  a s o l u t i o n  for  
a n  u n s y m m e t r i c  d o u b l e - e d g e  n o t c h e d  p l a t e  u n d e r  a n t i p l a n e  (mode  I I I )  l o a d i n g  is 
d e r i v e d  in  t h i s  sec t ion .  As  sugges t ed  b y  F i g u r e  2b, t he  on ly  n o n v a n i s h i n g  d i sp lace -  
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ment is u(z, y) in the x direction. With the stress-strain and strain-displacement 
relations, one can rewrite the equilibrium equation as V2u = 0 for this case where 
V 2 is the Laplacian operator in the z - y plane. Displacement and shear stresses 
may be then represented in terms of an analytic function w(z + iy) of the complex 
variable z + iy, 

u = Im[~(z + iy)]/tL (A1) 

and 

• ~y + ir~ = ~ ' ( z  + iy) (A2) 

where # is the shear modulus. 
The aim of this analysis is to find the analytic function meeting appropriate 

boundary conditions. Since the problem is antisymmetric about y = 0, we simplify 
the solution procedure by just considering half of the configuration (i.e., y >_ 0) as 
shown in Figure Al(a). The stress-free boundary conditions on the crack faces 
(along BD and AC), and the top and bottom faces of the plate imply Ou/On = 0 
where n is the measured normal to the faces concerned. The antisymmetry of u 
gives u = 0 along AB.  The analytic function may be deduced readily if one first 
conformally maps the strip in Figure Al(a) into another strip in the } - n plane as 
shown in Figure Al(b) such that the corresponding boundary conditions are 

u = 0 along A ' B '  

0U 
- 0 along B ' D ' F ~ '  and A ' C ' E ~ ' .  (A3) 

0 (  

It is easily seen that u is then given by 

ttu = An (A4) 

where A is to be determined to give the proper thickness averaged stress a trans- 
mitted across the plate boundary. The mapping function for this transformation is 

( +  in=2-~r s in- l{[  ~ - a - 2 c ° s  r ( z + / y ) ] / ( a + f l ) } H  (A5) 

where here and below we use the notations 

a = cosOra/H) fl = cos@b/H).  (A6) 

[The mapping is generated in steps as follows 

+ i ~ '  = - c o s [ ~ ( z  + i y ) /H]  

maps the strip of Figure Al(a) into the half ,I~ _-__ 0 of the • - • plane and 

2(~ + i~ )  +/3 - a = (a + fl)sinDr(~ + in)/2] 
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maps the strip of Figure Al(b)  into the same half  plane. El iminat ion o f ~  + i q  
gives (A5).] 

From equations (A1), (A4), and (A5), the analytic funct ion w is 

-2A  sin-+ o 2co  
and stresses are calculated from (A2) as 

(A7) 

4A l r ( z + i y )  ( / ~ + a )  2 - / ~ - a - 2 c o s  " . (A8) rxy + it= = - ~  sin H H 

_L_ 
b 

T 

C Eo 

T 
Q 

± 
~z 

A',-- u =0 8u 

B 8n 

(a) 

=0 

~ y  

-I  

f 
u=O 

+I 

,6, / C / / 
Eoo 

t, oo ~ 1 0--~--=0 

/ 

a' D'  Foo 

~ 7  

Cb) 

Fla. A1. (a) Half of the cracked strip of Figure 2b, loaded in an antiplane strain. (b) Conformal map 
of above region to a strip with corresponding points shown. 

We may now determine A by equating the thickness average of rxy to a. This  average 
is independent  of y and is most  readily computed by lett ing y --~ ~, in which case 
the r ight-hand side of equation (A8) reduces to 2A/H. Thus,  

A = gill2. (A9) 

Some useful relations can be derived from the foregoing solution. For  example, 
on the Ear th ' s  surface (z = 0, y => 0), the surface shear strain is 

I - )2 ]_,,2 0UU 2 ~ s i n h  2 c o s h ~ - +  a - / ~  - ( a + f l ) 2  (A10) 
Oy z=o # 
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and the surface displacement  itself is given by 

12, = 2cosh-7 ; ,  + a - ~  ( a + 8 )  • (Al l )  
z=O 7r l~ 

In particular,  the  slip displacement discontinui ty at the fault  t race is 

Au = 2u 
2all 

z~O,y=O + "11" b/, 
cosh-l[(2 + a - 13)/(a +/~)]. (A12) 

It is easiest to determine the thickness average 5 of local slip Au at the plate 
boundary indirectly by observing tha t  ~ must  appear  in a representat ion of u in the 
form 

u(z, y) = zy/~ + 5/2 + S(z, y). (AI3) 

Here the par t  S(z, y) is so defined that  its average over z vanishes and S(z, y) ~ 0 
as y --, ~. Subst i tut ing this representa t ion with z = 0 into (All) and rearranging 
gives 

cosh \ H  + ~aH + a H /  
~y 

2 cosh ~ -  + a - fl 

cosh v___yy (a + ~)cosh v---~y 
H H 

Thus  as y --* ~ and S --* 0, one has 

e ~ / 2 ~  -- 2 / ( a  + 8) 

and therefore  

= (2aH/m,) ln[2/(~ + 8)] -- a/k (A14) 

where k is the spring constant .  The  spring constant  as so defined is reported as 
equation (2). 

The  local shear stress rxy t ransmi t t ed  across the locked port ion of plate boundary 
between z = b and z = H - a is 

• 7rZ ~rZ 
rxyly=o=2~sm (a+8)  2 -  2 c o s ~ + a -  (A15) 

for b < z < H - a. Recalling tha t  the mode III stress intensi ty factor is defined by 

K m =  lira 242~rr~[ y=O 
r--*0 

where r is distance into the locked zone ahead of the tip of a slipping crack, one 
finds 

K(~) 4~2H sin(Ira/H)/(a + ~) (A16) 111 ~ (7 
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for the lower crack tip at z = H - a and 

K ~  = ~ / 2 H  s i n ( ~ b / H ) / ( a  + fl)  (A17) 

for the upper crack tip at z = b. If the slipping cracks advance into the locked region 
by amounts Aa, Ab the energy (per unit distance along strike) G(a)Aa flows to the 
lower tip and G(b)Ab to the upper. Here, G is the energy release rate and is related 
to Km by the Irwin formula 

G = K~zz/2t t .  (A18) 

This last expression was evaluated with the help of equation (A16) and the numerical 
solution developed for a, is the source of the fracture energy values inferred in the 
text. 

In fact, the line-spring procedure as outlined in the text implies expressions of 

T 
H 

0o 
slipping 

FIG. A2. Explanation of the procedure for calculating crack tip elastic energy release rate for advance 
of slipping region into the locked patch. 

its own for energy release rate. It is interesting to see that these expressions are 
consistent with what is given above and, also, that they enable the calculation of G 
for very general patterns of crack advance. Evidently, the strain energy of the 
lithosphere expressed consistently with the line-spring procedure is 

ult -2 (~  d x  + H "~ a~,e~,  dx  d y  
ate 

(A19) 

where ~, and tt are summed over x and y, indexing thickness-averaged stresses and 
strains in the plate, and where 

6 = a / k ,  cx~ = (1 + l , ) a ~ / E  - v 5~,(axx + , 7 ~ ) / E .  (A20) 

With reference to Figure A2, a pattern of infinitesimal crack advance into the 
locked region may be described by specifying Aa(x) and Ab(x) and also, when the 
left border of the locked region is vertical as shown, the advance Ac of this vertical 
border. Writing the resulting change in U to first order as products of local G values 
times areas swept out, one has 

A U  = - G(° ) (H - a ° - b°)Ac - ; [G(~)Aa + G(b)Ab] dx.  (A21) 
~]fa ult 
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Here "0" refers to values at the left border of the locked region in Figure A2, G (°) is 
the average G from bo to H - ao along that boundary, and G (') and G (b) are local G 
values at the respective lower and upper crack tips. 

Now, if Ak denotes the corresponding variation in k due to Aa and 5b and if A5 
and Acx, denote the variation in the deformation field, necessarily satisfying 

ff .  ~ r A S d x +  fp l  crx~Aex~dxdy=O 
ult ate 

by the principle of virtual work, then direct calculation shows that 

Hao 2 F 1 
A U = | - 2k---~ Ac -- H Jfa A(1/k)a2 ult 2 dx. (A22) 

Here a is the thickness averaged stress of the line-spring solution, ~o is its value at 
the left boundary, and k0 is the spring constant (calculated from ao and bo) at that 
same location. Comparing expressions for A U, one has 

G(a) - -  ( r 2 H  0( l /k ) ,  G(b) -- a2H O(1 /k )  (A23) 
2 Oa 2 Ob 

and 

G (°) = ao2H/2ko (H  - ao - bo). (A24) 

When k is expressed from (A14) or (2), these expressions for G (~) and G (b) are found 
to be identical to those calculated from (A18) through use of (A16) and (A17). In 
addition, we get an expression for G (°). 

The latter can be put to good use for approximate calculations. For example, 
G(°)(H - ao - bo) may be assumed to be approximately equal to the energy release 
G H  that would be calculated by standard plane stress crack mechanics if the locked 
zone in Figure A2 extended through full thickness (ao = bo = 0). In this way, one 
gets a simple estimate of G (°) which may be converted via (A24) to an estimate of 
ao. We have found such estimates to compare well with the results of our numerical 
solutions, e.g., for geometries like those of Figures 4, 10, and 13. 

Finally, it is interesting to calculate the ratio G(°)/G (a) at  the left boundary of the 
locked region in Figure A2. It measures the propensity for mode II crack advance 
Ac as compared to that  for mode III advance Aao. The ratio is 

G(°)/G (a) = (ao + flo) ln[2/(ao + ~o) ]H/ r r (H  - ao - bo) s in(~rao/H) .  (A25) 

For example, when bo = 0 as in Figures 4 and 13 and we choose H -- 30 km, the 
ratio is 1.21 for a locked zone depth H - ao of 6 km, 0.96 for 8 km, 0.76 for 10 kin, 
0.61 for 12 km, and 0.44 for 15 km. Thus, locked zones of shallow depth (<~7.5 km) 
bordering a freely slipping fault are more severely stressed in mode II from their 
sides, and deeper zones in mode III from below, assuming that energy available for 
fracture is the proper measure of severity of stressing. 


