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Local Tsunamis and Distributed Slip at the Source

Eric L. GeisT! and RENATA DMOWSKA?

Abstract— Variations in the local tsunami wave field are examined in relation to heterogeneous slip
distributions that are characteristic of many shallow subduction zone earthquakes. Assumptions inherent
in calculating the coseismic vertical displacement field that defines the initial condition for tsunami
propagation are examined. By comparing the seafloor displacement from uniform slip to that from an
ideal static crack, we demonstrate that dip-directed slip variations significantly affect the initial
cross-sectional wave profile. Because of the hydrodynamic stability of tsunami wave forms, these effects
directly impact estimates of maximum runup from the local tsunami. In most cases, an assumption of
uniform slip in the dip direction significantly underestimates the maximum amplitude and leading wave
steepness of the local tsunami. Whereas dip-directed slip variations affect the initial wave profile,
strike-directed slip variations result in wavefront-parallel changes in amplitude that are largely preserved
during propagation from the source region toward shore, owing to the effects of refraction. Tests of
discretizing slip distributions indicate that small fault surface elements of dimensions similar to the
source depth can acceptably approximate the vertical displacement field in comparison to continuous
slip distributions. Crack models for tsunamis generated by shallow subduction zone earthquakes indicate
that a rupture intersecting the free surface results in approximately twice the average slip. Therefore, the
observation of higher slip associated with tsunami earthquakes relative to typical subduction zone
earthquakes of the same magnitude suggests that tsunami earthquakes involve rupture of the seafloor,
whereas rupture of deeper subduction zone earthquakes may be imbedded and not reach the seafloor.

Key words: Tsunami, coseismic displacement, source parameters, nonuniform slip, crack, tsunami
runup.

1. Introduction

In recent years, there have been a number of subduction zone earthquakes that
have generated unexpectedly large local tsunamis. For example, the maximum
runup from the 1992 M, = 7.7 Nicaragua earthquake was 9.1 m (BAPTISTA et al.,
1993) and for the 1994 M,, = 7.6 Java earthquake, a maximum runup of 13.9 m was
recorded (Tsuil et al., 1995). The focus in this study is on shallow subduction zone
thrust earthquakes, such as the aforementioned events, that generate most of the
significant tsunamis. A critical assumption in calculating the static seafloor defor-
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mation and the tsunami derived from a particular earthquake is how slip is
distributed throughout the rupture area. Results from seismic inversions indicate
that interplate thrust earthquakes rupture heterogeneously both in space and time
(as summarized by THATCHER, 1990). In contrast, however, many tsunami models
assume that slip is distributed uniformly over the entire rupture area or over several
large subevents. The objective of this study is to determine how these assumptions
affect estimates of the local tsunami wave field and at what minimum dimension it
is necessary to spatially discretize a heterogeneous rupture.

The physical processes that govern tsunami generation (elastic dislocation) and
propagation (shallow water wave theory) are linked at the seafloor. For sufficiently
large spatial wavelengths, the initial tsunami waveform mimics the vertical compo-
nent of static displacement of the seafloor. Therefore, examination of the relation-
ship between static source parameters and the local tsunami is centered on
determining the static elastic displacement field from a given slip distribution. The
hydrodynamics of propagation and runup are then taken into account to determine
how heterogeneous rupture of subduction zone earthquakes affects the tsunami
wave field away from the source region.

We introduce an alternative to the kinematic description of static deformation
associated with earthquakes, commonly used in tsunami modeling. Rather than
explicitly specifying slip, slip distributions are derived from a crack model
(DMowskA and KosTroV, 1973; RUDNICKI and WU, 1995) by specifying the stress
drop associated with the earthquake. Although crack models have commonly been
used in understanding the dynamics of earthquake rupture (e.g., DAs, 1981), they
have been curiously absent in tsunami studies. Crack models give important insight
on the effect assumptions of the earthquake source process have on surface
displacement, and hence the initial tsunami. Discretizing the continuous slip
distributions derived from crack models allows us to determine the minimum
spatial resolution needed to reconstruct the initial tsunami wave field. Using the
1992 Nicaragua tsunami earthquake as an example, we demonstrate that heteroge-
neous slip distributions derived from inversions of seismic waveform data provide
information of sufficient spatial resolution to accurately model the local tsunami
wave field. Details of how seismic inversions are correctly formulated, however, are
not discussed here (see, for example, DAS and SUHADOLC, 1996).

2. Static Displacement Field from Finite and Continuously Distributed Dislocations

We first examine the static displacement field associated with finite dislocations.
First, consider a Volterra dislocation in which slip J (defined as 6 =[0" — 7)) is
uniform across X (Fig. 1a). Several authors have derived analytic expressions for
the surface displacement overlying an inclined fault within a homogeneous half-
space that are particularly relevant in determining the initial conditions of tsunami
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propagation (SAVAGE and HASTIE, 1966; OKADA, 1985; among others). Care must
be taken when using Volterra dislocations to calculate the vertical displacements for
very shallow ruptures. For small values of a (Fig. 1b), there is a strong short-wave-
length component above the updip edge that is increasingly prevalent with decreas-
ing o (see Appendix).

Next, consider a Somigliana dislocation J(¢) along an inclined planar fault in
two dimensions (Fig. 1b). The displacement associated with a single edge disloca-
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Geometry of dip-slip faulting, typical of interplate subduction zone earthquakes. (a) Three-dimensional
view of the fault plane for which slip varies in both the dip (¢) and strike () directions. The magnitude
of slip is schematically indicated by the contours. For this study, only pure dip-slip is considered. (b)
Cross-sectional view of a rupture zone defined by a < ¢ <b where the ¢ axis is aligned with the dip
direction of the fault plane. Variable slip along the ¢ axis is defined as d(&)=[0" — 0]
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tion at £ =s of strength f in a half-space along the fault derived by FREUND and
BARNETT (1976), using a complex-variable representation of stresses, is (including
the correction noted by RuDNICKI and Wu, 1995):

u.(x,s)=pU.(x, s) ()
where
xs sin? o sin o X —scosa
U. = tan ! .
+(%,9) n(x?+ 52— 2xs cos a) T < s sin a >

Recently, SAVAGE (1998) also derived the displacement field for an edge dislocation
in a layered half-space. Any arbitrary distribution of slip along an inclined fault can
be posed in terms of a dislocation density

5:(6) =D (S) &)

where D:(¢) is the edge dislocation density along the ¢-axis coincident with the
fault plane and b is the magnitude of the Burgers vector in the ¢ direction of the
infinitesimal dislocation between & =5 and & =s+4+ds (WEERTMAN, 1964). The
vertical displacement arising from arbitrary slip is then obtained from the superpo-
sition of infinitesimal edge dislocations using (1) (FREUND and BARNETT, 1976):

b
u.(x, 0) = J U.(x, 5)07(s) ds 3)
where « and b represent the undip and downdip distances along the ¢ axis as shown
in Figure 1b. Thus, for continuously distributed edge dislocations, the displacement
field is dependent on the slip gradient 0:(¢) along a < ¢ < b rather than strictly the
slip distribution itself.

3. Theoretical Slip Distributions

The effect of using assumed uniform (Volterra) dislocations for tsunami propa-
gation models is examined by comparing the associated initial tsunami waveform to
a scalar moment-equivalent tsunami waveform derived from a static crack model.
For this section and the next, elastic deformation and tsunami dynamics, respec-
tively, are first considered in the (x — z) plane, implying plane strain in the solid
earth and layer-mean transport (one horizontal dimension, x) in the water column.
Undoubtedly, along-strike variations in slip also have important effects on tsunami
generation (as shown in Section 5), however in this section we are concerned with
how downdip changes in slip distribution affect the profile of the initial waveform
that, in turn, controls the dynamics of local runup (TADEPALLI and SYNOLAKIS,
1996).
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3.1. Slip Distributions Derived from Crack Models

Much work has recently been done in establishing the theoretical slip distribu-
tions and surface deformation for cracks of different configurations (e.g., KOSTROV
and DAs, 1984; MCTIGUE and SEGALL, 1988; WU et al., 1991; RUDNICKI and WU,
1995). For a subduction zone thrust fault, an expanding rupture front can be simply
envisioned as a mode II fracture in the x-z plane at time scales consistent with the
rise time of the event. We briefly review the mechanics of dip-slip faulting (mode II)
for two cases as initially investigated by DMowskA and KosTrov (1973): (1)
imbedded rupture and (2) rupture propagating to the surface.

We start with an imbedded rupture, initially neglecting friction, as shown in
Figure 1b. As indicated in the previous section and by DMOwWSKA and KOSTROV
(1973), an arbitrary Somigliana dislocation along a crack of finite length can be
considered as the linear superposition of edge dislocations along the length of the
crack. The resulting integral equation for slip gradient is

1 [?6'(s) 1 (? . 2(1—v)
j ds+— | K(, $)0'(s) ds= J(©) ©
T Ja S_i T Ja H

where 4 and x are Lamé’s constant, v is Poisson’s ratio, and f(¢) represents the
shear stress resolved along the plane of the crack. In terms of principal stresses, f(¢)
is given by:

f(©)= 0%, = o0 — 6%) sin 20 + 0. cos 2z )

(zero superscript indicating initial stress). The kernel K(&, s) is given in DMOWSKA
and KosTrRov (1973). The integral Equation (4) includes inverse square-root
singularities at the crack tips. The strength of these singularities is given by the
mode-II stress intensity factor defined by (RICE, 1968; RUDNICKI and Wu, 1995)

— I K /
K= lim 555 /2m80'(0) (©)

The distribution of slip can be determined by reduction of the singular integral
Equation (4) to simultaneous linear equations using a Chebyshev polynomial
technique described by ERDOGAN and GupTA (1972) and DMOWSKA and
KosTrOV (1973).
A Coulomb friction condition is introduced such that slip occurs when (follow-
ing the notation of RUDNICKI and Wu, 1995):
|0-§»7 | =ka,, 7
where k is the coefficient of friction. In the formulation of DMOWSKA and
KosTrov (1973) and RUDNICKI and WU (1995), k is constant and thus does not
incorporate rate- and state-dependent sliding friction used in dynamic models of
rupture (DIETERICH, 1979). As indicated by DMOWSKA and KosTrRov (1973), the
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integral Equation (4) can be modified to account for Coulomb friction by adjusting
the kernel K(¢&, s) and the right-hand side of (4) accordingly:

Ji(&) =f(&) —kay, ®)

(1 (&) replaces f(¢) in (4)). The integral equation is solved using the numerical
method of ERDOGAN and GUPTA (1972) as before, resulting in the slip distribution
shown in Figure 2a. For deeply imbedded cracks, dislocation does not affect the
normal stress along the fault and therefore, an analytical expression for the
distribution of slip can be derived (RUDNICKI and Wu, 1995).

As noted by DMowskA and RICE (1986), for faults near or rupturing the
surface involving the Coulomb friction condition (7), any perturbations in the shear
stress caused by slip will also affect the normal stress along the fault. This
introduces nonlinearity into the integral equations and iterative solutions must be
invoked (RubpNIckI and Wu, 1995). The resulting slip distribution becomes in-
creasingly skewed updip as ¢ »0. RUDNICKI and WU (1995) demonstrate that the
updip propagation of slip is unstable when the length of the slip zone exceeds a
critical width (W,,,). Small values of the ratio of d/W =a sin o /(b —a) become
increasingly unstable, such that for small values of W, shallow earthquakes are
likely to result in surface rupture.

For the case of surface rupture, the appropriate condition at the updip rupture
edge is (DMOwsKA and KosTROV, 1973)

0'(&), Kn(¢)=0 for &=0. (€

The shape of the slip distribution for surface rupture (Fig. 3a) is dramatically
different than for even a shallow imbedded rupture, owing to the fact that shear
stress along the crack plane is required to vanish at the free surface. The slip
distribution for surface rupture is a quarter-ellipse shape, with the maximum slip
twice that for an imbedded rupture with the same stress drop (KNOPOFF, 1958;
BOORE and DUNBAR, 1977; SHIMAZAKI, 1986). As noted by SHIMAZAKI (1986),
there appears to exist a discrete threshold between small imbedded earthquakes and
large surface rupture earthquakes in which the scalar seismic moment ideally
increases abruptly by a factor of two, owing to the different boundary conditions
associated with surface rupture. The exact shape of the slip distribution shown in
both Figures 2a and 3a depends on the assumed stress-drop magnitude and
distribution, which itself is commonly heterogeneous.

The vertical displacement of the seafloor u. (x) is calculated using Equations (1)
and (3). Conventional numerical integration techniques are used to evaluate Equa-
tion (3) at a fine discretization level equal to that used in calculating slip distribu-
tion by the Chebyshev polynomial technique (i.e., n =100) (Fig. 2b, long-dashed
line). Alternatively, to include the effect of the slip-gradient singularities at the
crack tips, the same Chebyshev polynomial technique could be used to evaluate the
vertical displacement integral (Fig. 2b, short-dashed line). These singularities can be
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Figure 2
Slip distribution (a) and vertical seafloor displacement profile (b) for an imbedded crack (a/W = 0.36,
dashed line) where the average stress drop is 9.0 MPa along a fault that dips « = 20°. Vertical axes for
(a) and (b) are normalized with respect to the maximum slip. Horizontal axes normalized with respect
to the fault width. Solid line indicates average slip in (a) and associated vertical displacement profile in
(b). Short dashed line in (b) represents vertical displacement profile that includes the contribution of the
crack-tip singularity points to the deformation field.

thought of, using the description of BILBY and ESHELBY (1969), as dislocations
“piled up” at the crack tips. Stress singularities at the crack tips, however, are
physically manifested by inelastic small-scale yielding near the crack tips (RICE,
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1968; DMOwSKA and RICE, 1986) and therefore possibly yield fictitious compo-
nents of deformation under a purely elastic description. RICE (1968) indicates that
although the stress-intensity factors of the crack-tip singularities can conveniently
characterize the applied load at the crack tip (and crack-growth energy release G),
the singularity points are not necessarily linked to the actual response of the
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Slip distribution (a) and vertical seafloor displacement profile (b) for a surface-rupturing crack (dashed
line) where the average stress drop is 4.8 MPa along a fault that dips « = 20°. Solid line indicates average
slip in (a) and associated vertical displacement profile in (b).
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Comparison of vertical displacement profiles associated with a shallow imbedded crack («/W = 0.036,
solid line) and surface-rupturing crack (dashed line) along a fault that dips o = 20°. Average stress drop
for the shallow imbedded crack and surface-rupturing crack is 6.3 MPa and 4.8 MPa, respectively.

material surrounding the crack (a similar explanation is given by IDA, 1973). For
this reason, conventional numerical integration techniques are used to calculate the
static, vertical displacement profile.

In comparison to the elliptical slip distributions from an imbedded crack,
uniform slip results in a lower maximum vertical displacement and concentrated
deformation near the edges of the rupture zone, resulting in sharper extrema at the
surface locations directly above the crack tips (¢ and b) (Fig. 2b). Similarly, the
maximum vertical displacement associated with the slip distribution from a surface-
rupturing crack is greater than that associated with a uniform slip dislocation equal
in magnitude to the average of the slip distribution (Fig. 3b). In addition, an
increase in maximum vertical displacement is observed for a surface-rupturing
crack in comparison to that for a very shallow imbedded crack (a/W = 0.036, Fig.
4).

3.2. Prescribed Slip Distributions with a Smooth Closure Condition

Other theoretical slip distributions have been formulated so that stress concen-
trations at the crack tips are finite (termed a smooth closure condition by BILBY
and ESHELBY, 1969). We specifically examine prescribed slip distributions, although
other techniques such as regularization have been implemented in the framework of
boundary integral equations (FUKUYAMA and MADARIAGA, 1995; TADA and
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YAMASHITA, 1997). FREUND and BARNETT (1976) use the following prescribed
slip distribution:

12

e (g7 =7, y<q
12

(1—gq)

where A is a scaling coefficient, y = (¢ —a)/(b —a), and ¢ (0 < g < 1) controls the
skewness of the slip distribution. The particular form (10) is invoked so that
Ky(a)=0 and K;(b)=0 (i.e., 0'(a)=0 and 0'(b) =0 Equation (6)). The stress
drop across the length of the crack is finite but variable. In the context of
analyzing the mechanics of both single-slip events (earthquakes) and the cumula-
tive slip along a fault, CowiE and SCHOLz (1992) and BURGMANN et al. (1994)
relate the tapering of slip distributions near the crack tips to inelastic deforma-
tion. For crack models in which the stress concentration near the crack tip is
limited by the yield stress of the surrounding material, the amount of taper is
related to the size of the frictional breakdown zone near the crack tip (COWIE
and SHIPTON, 1998).

A comparison of the vertical displacement profiles associated with the smooth
closure distribution of FREUND and BARNETT (1976) where ¢ = 0.3 and uniform
slip is shown in Figure 5. Like the slip distribution from the purely elastic crack,
the maximum vertical displacement for the smooth-closure slip distribution is
greater than that for uniform slip. The difference, however, is not as great for
the smooth-closure model, because the integrated slip gradient is not as large for
the smooth-closure model in comparison to the elastic crack model. Because slip
is concentrated toward the center of the rupture for either the elastic crack or
smooth-closure model, the maximum initial amplitude and leading-wave steep-
ness is greater than for the tsunami calculated under the assumption of uniform
slip (Figs. 2b and 5b, long-dashed line).

(10)

=y +q9)+q), yv>q

3.3. Effect of Descretizing Slip Distributions

In this section we examine at what level continuous slip distributions can be
discretized to provide an adequate approximation to the vertical displacement
profile. The displacement profile associated with a discretized slip distribution is
calculated by the linear superposition of the displacement field from individual
Volterra dislocations along a dipping fault using the method of SAVAGE and
HASTIE (1966). Coarse discretization (n =4) of the slip distribution derived from
the smooth closure condition (Equation (12)) can acceptably reproduce the verti-
cal displacement profile (Fig. 6). In most tsunami applications, therefore, a few
subevents with uniform slip in the dip direction can adequately approximate the
vertical displacement profile in comparison to using continuous slip distributions.
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Assuming uniform slip for the entire dip dimension of the rupture zone (n=1),
however, is prone to yielding inaccurate results (Fig. 6).
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Slip distribution (a) and vertical seafloor displacement profile (b) for an imbedded rupture (dashed line)

along a fault that dips o =20°. The prescribed slip distribution of FREUND and BARNETT (1976)

(Equation (10)) is shown for ¢ =0.3. Using Equation (10), the maximum slip is twice the average slip.
Solid line indicates average slip in (a) and associated vertical displacement profile in (b).
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Discretized slip distributions (a) and vertical seafloor displacement profiles (b) along a fault that dips
o =20° in comparison to the continuous prescribed slip distribution of FREUND and BARNETT (1976)
shown in Figure 4.

4. Effect on Local Propagation and Runup

Tsunamis are gravity waves excited by the sudden increase in potential energy
that arises from vertical displacement of the seafloor during earthquake rupture. As
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such, the magnitude and pattern of vertical seafloor displacement (u.(x, y, 1))
dictates the amplitude and waveform (7(x, y, t)) of the ensuing tsunami. In general,
for the rise times of most earthquakes, displacement of the seafloor can be
considered instantaneous relative to the propagation speed of tsunamis such that
the initial tsunami wave field mimics the vertical seafloor displacement field. In
certain cases, other factors must be accounted for, such as the horizontal compo-
nent of displacement in regions of steep bathymetry (TANIOKA and SATAKE, 1996).
Also, wavelength components of the vertical displacement field less than approxi-
mately three times the water depth are attenuated through the water column during
tsunami generation. Attenuation of short-wavelength components of the vertical
displacement profile are mostly a concern in the cases of shallow and surface
faulting. Starting with the three-dimensional Green’s function for water motion in
an ocean of finite depth (STOKER, 1957), KAJIURA (1963) demonstrates that the
effect of attenuation on the initial tsunami wave field can be approximated by
essentially applying a 1/cosh(kh) filter to the vertical displacement field, where k is
the wave number, % is the water depth (see also, KAJIURA, 1981).

Because of the long wavelengths of tsunamis in the open ocean, tsunami
propagation is modeled using the shallow-water wave equations:

0 h

% + V- [v(y +h)]=0 Continuity Equation

s (1n
a—: + v -V)v+gVp=0 Momentum Equation

where v=1v, (i=1, 2) are the depth-averaged components of horizontal velocity, #
and £ are the water surface elevation and water depth, respectively, relative to a
reference state, and g is the gravitational acceleration. Several phenomena charac-
teristic of tsunami propagation described by shallow-water wave theory include the
following: (1) after the tsunami leaves the source region, the amplitude of the initial
wave field is reduced by approximately half for a rupture of sufficient length; (2) as
the tsunami shoals during propagation from the source region toward shore, the
tsunami is amplified according to Green’s law:

B\ —1/4
()
0 0

and (3) the runup (and backwash) of tsunamis is controlled by the beach slope as
well as the peak amplitude and leading wave steepness of the wave (TOGASHI, 1983;
SyNoLAKis, 1987). For the latter phenomenon, runup laws have recently been
derived from shallow-water wave theory to relate the leading tsunami waveform to
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maximum runup height (R). A family of waves termed N waves by TADEPALLI and
SYNOLAKIS (1994, 1996) closely represent most local tsunami waveforms (i.e., the
profile of vertical surface displacement) generated by thrust fault events. The
generalized, nondimensionalized N wave given by TADEPALLI and SYNOLAKIS
(1996) is

1(x) = (eH)(x — X;) sech’[y(x — 0)]], = (13)

where ¢H is the wave amplitude (¢, an arbitrary small constant), y, = /3p,H, 0 =
X, + ct, and p, is a steepness parameter. TADEPALLI and SYNOLAKIS (1996) have
demonstrated that N waves are hydrodynamically stable waveforms that do not
fission (disintegrate into separate waves) over large distances. The maximum runup
of N waves across a beach slope of angle f is (TADEPALLI and SYNOLAKIS, 1996)

R =33p*0(L, )Ry, (14)

where Q(L, y) is a factor determined numerically and R, is the runup of a solitary
wave with identical H (SYNOLAKIS, 1987):

R, = 2.831 /cot BH". (15)

Whereas, Green’s law (11) is contained in the derived N-wave runup law (15),
other parameters of the waveform besides maximum amplitude (namely, effective
wavelength and amplitude ratio between leading phases) also significantly affect the
maximum runup of local tsunamis. GEIST (1998) demonstrates that maximum
runup is approximately linearly proportional to wave steepness (specified as tan—!
(H/X,) where X, is the distance between the leading depression and trailing peak)
except for very broad waves, though the relationship is also dependent on beach
slope. TADEPALLI and SYNOLAKIS (1996) also indicate that maximum runup is
functionally dependent on the amplitude ratio between the leading depression and
trailing peak. Therefore, differences in the entire initial tsunami waveform lead to
considerable differences in runup estimates. In general, tsunamis generated from
nonuniform slip distributions that have a greater maximum amplitude (H) and
greater leading wave steepness than tsunamis calculated assuming uniform slip
(Figs. 2 and 3) result in significantly higher runup. Similarly, the greater initial
tsunami amplitude (but similar leading wave steepness) that results from surface
rupture in comparison to shallow-imbedded rupture (Fig. 4), corresponds to slightly
higher tsunami runup for surface-rupture events.

5. Local Tsunamis Computed from Two-dimensional Slip Distributions
Results from the previous sections indicate that large slip gradients in the dip

direction have an important effect on the initial tsunami waveform and local
tsunami runup. The results also indicate that seafloor displacement can be closely
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approximated with discretized slip distributions in comparison to continuous slip
distributions. In this section we extend our analysis to examine how two-dimen-
sional slip distributions in the fault plane affect tsunami propagation in (x, y, )
space.

Seismic inversions of large interplate thrust earthquakes have shown that slip
can commonly vary by an order of magnitude, and thus cannot be simply
characterized by a simple crack. This spatial variability in slip can, however, be
envisioned as the result of dynamic interaction between individual cracks
(DMowskA and RICE, 1986). To explain the variability of slip, authors have
formulated dynamic models involving the interaction of ruptures across barriers
(DAs and AKk1, 1977) and using rate- and state-dependent sliding friction (TSE and
RICE, 1986; STUART, 1988; BEN-ZION and RICE, 1995; BOATWRIGHT and Cocco,
1996; COCHARD and MADARIAGA, 1996). Because the dynamics of earthquake
rupture have only a minor effect on the local tsunami, we do not pursue more
sophisticated theoretical treatments involving dynamic friction, instead focusing our
efforts on relating two-dimensional static slip distributions to the local tsunami
wave field. Specifically, we examine the response of the local tsunami to prescribed
and observed slip variations in the ¢ and y directions (Fig. 1b).

5.1. Numerical Methods

Vertical surface displacement in (x, y) space (specifically, the static elastic
Green’s functions) cannot be calculated for an arbitrary continuous distribution of
slip except for simple rupture geometries and analytic slip functions (MA and
KuszNIR, 1992; SINGH et al., 1994). For arbitrary slip distributions, therefore,
vertical displacement of the seafloor associated with slip distributed in (&, y) space
is calculated from a discretized approximation using the point-source expressions of
OKADA (1985) for dip-slip faulting. It is worth noting that short-wavelength
components of deformation are also apparent in the point-source expressions for
very shallow source depths (Appendix). The total displacement field is calculated
from the linear superposition of the displacement field from each of the surface
elements (cf., SATAKE, 1993). A more geometrically versatile technique using
triangular elements has recently been proposed by Wu et al. (1991) and JEYAKU-
MARAN et al. (1992).

For the purpose of examining the effect of distributed slip in two dimensions, a
model is constructed in which slip is discretized to 10-km square surface elements
over a 70 km x 270 km rupture zone (Fig. 7). The horizontal grid size for which
seafloor displacement and tsunami propagation is calculated is 3.5 km, and the time
step for propagation is 10s. A simple two-piece linear-varying water depth is used
for the left half of the grid to simulate local shoaling of the tsunami over a
continental-type margin (Fig. 7). The initial tsunami wave field is calculated from
the vertical displacement field using the 1/cosh(kh) filter noted by KAJIURA (1963,
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1981). Propagation of the tsunami is calculated using the two-dimensional, linear-
long wave equation with a full reflection boundary condition along the shoreline
(h=0) and radiation boundary conditions (REID and BODINE, 1968) along the
open ocean boundaries.

5.2. Results

The effect of nonuniform slip in both the dip and strike direction on the local
tsunami wave field is determined in comparison to uniform two-dimensional slip.
Figure 8 shows the initial tsunami waveform using 1 m of uniform slip over the
rupture area illustrated in Figure 7, along with synthetic marigrams of the local
tsunami propagating toward the shoreline and of the outgoing tsunami propagating
toward the open ocean. Note that the local tsunami is fully reflected at the
shoreline, with the reflected phase superimposed on the later part of the direct
arrival. Figure 9 shows the synthetic marigrams associated with slip variations in
the dip (¢) direction calculated from Equation (10), where ¢ = 0.3 and the average
slip is again 1 m. In comparison to Figure 8, the amplitude of both the local and
outgoing tsunamis is significantly greater for nonuniform slip in the dip direction,
a confirmation in two dimensions of the results shown in Figure 5. The third test
performed is the effect of slip variations in the strike (y) direction on the local
tsunami wave field (Fig. 10). For this case, slip remains constant in the dip (¢)

sea surface

sea floor

Figure 7
Model geometry for calculating the local tsunami wave field associated with slip variations in both the
dip and strike directions (Figs. 8—10). Discrete representation of slip distribution shown by grid aligned
with dipping fault plane (10 km grid spacing, L =270 km, W =70 km). Static elastic displacement and
tsunami propagation calculations performed on grid at the sea surface (3.5-km grid spacing). Subduction
zone margin bathymetry simply represented by a two-piece linear slope for the left side (coast-trench
distance = 110 km with a slope change at 55 km) and constant water depth (h, = 4 km) for the right side.
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direction, but is specified as three patches of 2 m slip in the strike direction with
intervening patches of no slip, such that the average slip over the rupture area is
Im as in Figures 8 and 9. The associated wavefront-parallel changes in the
amplitude of the initial tsunami wave field are largely retained for the local tsunami,
owing to the effects of refraction during shoaling (GEisT, 1998). In addition, the
synthetic marigram waveforms are complicated by arrivals from wave energy
associated with neighboring slip patches, thus deviating from plane wave behavior
displayed in Figures 8 and 9. The amplitude variations are less apparent for the
outgoing tsunami, owing to the smoothing effects of geometric spreading. For both
cases of non-uniform slip (Figs. 9 and 10), the maximum amplitude of the local
tsunami is greater than the maximum amplitude of the tsunami associated with slip
uniformly distributed over the rupture area (Fig. 8), even though the scalar seismic
moment is identical for all three of the events.

5.3. Case History: 1992 M,, = 7.7 Nicaragua Tsunami Earthquake

To test the effect of different levels of discretization at the source on the local
tsunami wave field, we examined the tsunami generated by the 1992 M, =7.7
Nicaragua tsunami earthquake. IHMLE (1996) has determined the moment density
distribution for this earthquake from an inversion of seismic surface wave data. The
results were discretized on a 10-km grid size over the area of rupture (270 km by
70 km) and, for this study, converted to discrete slip values assuming a constant
shear modulus of u =3 x 10'° Pa. The left most column (A¢ = 10 km) in Figure 11
shows the slip distribution derived from IHMLE’s (1996) result, the initial tsunami
waveform (bottom), and six synthetic marigrams (top) positioned at equal incre-
ments along the right-hand side of the model domain representing the local
tsunami. To remove the effects of reflections that mask the direct arrival of the local
tsunami, radiation boundary conditions were used on all sides of the domain. Note
the high amount of slip near the updip edge of the rupture area, possibly indicating
that rupture extended to the seafloor, consistent with a surface-rupturing crack.
Other model parameters are the same as used for Figures 8—10. The other three
columns to the right (A¢ =20 km, 40 km, 80 km) represent different fault surface
element sizes, in which slip was calculated as the average of the original slip
distribution over 4, 16, and 64 cells, respectively. In each of the four cases, the total
scalar seismic moment of the earthquake is identical. The case represented by
A¢ =80km is similar to the tsunami model for this earthquake presented by
PIATANESI et al. (1996).

Figure 10
Initial tsunami waveform and synthetic marigrams for nonuniform slip in the strike direction. Slip is
constant in the dip direction. Slip distributed in three patches of 2 m slip with intervening regions of no
slip. Average slip for this distribution is identical to the average slip in Figures 8 and 9 (1 m).
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As the discrete surface element size representing the slip distribution is in-
creased, the maximum amplitude of the local tsunami decreases and the dominant
period increases. For the case of uniform slip in the dip direction (A¢ = 80 km), the
short-wavelength component apparent in the vertical displacement field above the
updip edge of rupture, rapidly dissipates during propagation. These effects are
particularly apparent for the broadside marigrams (middle four marigrams of each
column). Note also that using the full resolution afforded by the seismic inversion
results in substantially different first arrival times for each of the marigrams. Not
only do slip variations in the dip direction have a significant effect on the
cross-sectional wave profile, also two-dimensional heterogeneous slip distributions
result in complex local wave propagation patterns that affect later arrivals of the
tsunami. For example, note the relatively large amplitude of the marigram broad-
side from the intervening no-slip region (fourth marigram from the top). This
arrival is caused by the constructive interference of the two expanding wave fronts
from the neighboring high-slip regions. As the fault surface element size increases,
the amplitude of this arrival in particular is greatly diminished. The shorter
wavelengths associated with higher resolution of heterogeneous slip also result in
increased dispersion of the local tsunami.

6. Discussion

6.1. Appropriate Resolution Limits for Local Tsunami Models

We have shown that the local tsunami wave field is dependent on variations of
slip throughout the rupture area. In particular, because the vertical displacement
profile is dependent on the slip gradient, variations of slip in the dip direction must
be properly accounted for to accurately model the local tsunami. As indicated by
the similarity of the marigrams in Figure 11 for A¢ =10km and A¢ =20 km,
small-scale variations in slip beyond the resolution of most broadband seismic
waveform inversions, however, do not significantly affect the local tsunami for
several reasons: (1) Variations in vertical surface displacement depend on the depth
of rupture, such that the smallest wavelength in the surface displacement field is on
the order of the source depth. In calculating the surface displacement field, the
static elastic Green’s functions essentially smooth heterogeneity at the source with
increasing source depth. (2) Wavelength components of the seafloor displacement
field less than approximately 3 times the water depth will be strongly attenuated
with respect to the initial tsunami profile (KAJIURA, 1963). (3) Depending on the
distance between the source and shoreline and the water depth at the source,
geometric spreading during local propagation will also smooth short-wavelength
variations of the initial tsunami wave field. For most large, interplate thrust
earthquakes, the spatial resolution provided by seismic inversions is adequate to
accurately reconstruct the local tsunami wave field.
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6.2. Surface Rupture and Tsunami Earthquakes

The perspective provided by specifying stress-drop conditions for rupture pro-
vides a framework to discuss the anomalous local runup associated with tsunami
earthquakes. Tsunami earthquakes (KANAMORI, 1972) are those tsunamigenic
earthquakes that generate anomalously large far-field tsunami amplitudes in relation
to the surface-wave magnitude of the earthquake. Because the magnitude of the
far-field tsunami can be adequately represented by the seismic moment of the
earthquake (OKAL, 1988; ABE, 1995), tsunami earthquakes are also characterized by
a significant M, — M,, discrepancy (PELAYO and WIENS, 1992). KANAMORI and
KikucHI (1993) have proposed that tsunami earthquakes are often located where
little sediment enters a subduction zone, such that rupture can propagate updip to
the seafloor. Another observation is that the average slip associated with tsunami
earthquakes is consistently higher in comparison to typical subduction zone earth-
quakes with the same seismic moment (GEIST, 1998). To explain this observation,
previous studies as described in Section 3.1 have indicated that, for similar stress-drop
conditions, the maximum and average slip increases approximately two-fold. An
increase in the amount of vertical displacement associated with surface rupture
depends, however, on whether the stress drop (or stress-drop distribution) is reduced
because of surface rupture. At present, it is ambiguous from observations whether
or not the stress drop associated with tsunami earthquakes is anomalously low
(GEIsT, 1998). Thus, the association of tsunami earthquakes with seafloor rupture
as originally proposed by KANAMORI and KIKUCHI (1993) may also explain the
anomalously high average slip values associated with these earthquakes. Other
factors, however, in addition to surface rupture such as deeper water depth in the
source region and shallower depth of rupture beneath the seafloor, explain the
anomalously high local runup associated with these earthquakes (GEIST, 1998).

7. Conclusions

In this study, we have demonstrated the importance of using heterogeneous
rupture models to accurately model the local tsunami wave field. In particular,

Figure 11
Effect of fault surface element size for the 1992 Nicaragua tsunami earthquake. Water depth decreases
to the right. Each column represents four cases tested (A¢ = 10 km, 20 km, 40 km, 80 km). Bottom: Slip
distribution within the plane of rupture (cf., Fig. 4, IHMLE, 1996) and perspective image of the initial
tsunami wave field for each case. For both the initial wave field and slip distribution images, amplitude
is normalized to the individual maximum value. Dark colors in the slip distribution represent low slip
values and light colors represent high slip values. Top: Six synthetic marigrams representing the local
tsunami for each case. The marigrams are equally spaced along the right side of the model domain at
a water depth of 200 m. The top and bottom marigrams of each column are oblique to the source region,
whereas the middle four marigrams represent the broadside tsunami.
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tsunami models that assume that slip is uniform over the entire rupture area or over
several subevents that span the entire width of rupture, underestimate both the
amplitude and leading wave steepness of the local tsunami, leading to an underesti-
mate of local tsunami runup. In addition, strike-directed slip variations are largely
retained during propagation of the local tsunami, indicating that maximum runup
of a local tsunami will depend on the maximum region of slip during rupture,
excluding any effects caused by bathymetric variations. There are several physical
mechanisms that lead to attenuation of small-scale slip variations with respect to
the resulting local tsunami, such that heterogeneity of the rupture below the spatial
resolution limit of modern teleseismic data does not significantly affect the local
tsunami wave field. In most cases, slip distribution from seismic inversions of
broadband data can therefore be used to accurately model the local tsunami wave
field. Finally, the circumstance of surface rupture has a large effect on the slip
distribution owing to necessarily different boundary conditions at the seafloor,
possibly explaining the increased slip associated with tsunami earthquakes in
comparison to typical shallow subduction zone earthquakes.
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Appendix

In contrast to the smooth displacement profile associated with crack models, the
vertical displacement profile for finite dislocations along gently-dipping thrust faults
exhibits short-wavelength, high-amplitude components above the updip edge of
rupture (e.g., Fig. 11, A¢é =80 km). The asymptotic behavior of this short-wave-
length component with respect to depth (d) is examined below. Vertical surface
displacement for a finite, dip-slip dislocation (length L, width W) is given by
OKADA (1985) using the geometry described therein:

U d
2| Y Gng tan”@—l5 sin o cos o (A1)
2 | R(R+ ) R
— - v
where | ) 3

fW, )| =f0.p) —f0.p = W)—fr—L.p)+fx—L.p— W)

U 2 ; L, o(X+gcosa)+ X(R+ X)sina
= —— tan
A+u cosa Y(R+ X)cosa

5
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Figure Al
Quasi-invariant form (as a function of y = x — W cos a/d) of the first term in the equation for vertical
displacement associated with a finite dislocation (Equation (Al)). Fault dips to the left.

p=Xxcoso-+dsina

g=Xxsino—dcoso
d= ¢ sin o —q cos a
R2=y>+ @2+ ¢

X2=y2+ 42

The short-wavelength component (as a function of x) arises from the first term in
Equation (Al) at (¢, ¢)=(x— L, p— W). For depths less than the characteristic
fault dimensions, a quasi-invariant form of this term is obtained if we examine term
1 as a function of y (Fig. A1) where y = x — W cos «/d. For shallow dip angles and
source depths, term 1 is characteristically larger than the other two terms in
Equation (A1), whereas for steep dips, the short-wavelength component of vertical
displacement above the updip edge of rupture is barely discernible, deriving from
the relatively larger contributions of terms 2 and 3. As d approaches W sin o, the
horizontal scaling represented by y decreases such that the characteristic wavelength
of this component decreases (though the amplitude remains bounded as shown in
Fig. Al). For surface rupture (d = W sin ), this term and u, are undefined at
x = Wcosa. Care must be taken therefore in choosing d for finite dislocation
models as input to tsunami calculations and in recognizing the existence of
short-wavelength components in the vertical displacement field.
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The vertical displacement field can also be calculated for heterogeneous slip
distributions by superimposing point-source solutions for the vertical displacement
field given by OKADA (1985):

U, | 34
ul = —2—2 |: Rpsq — I%sin « cos o |AX (A2)
n

where 1 2

P [ 1 . 2R+d}

J+u| R(R+d) R3(R + d)>
p=x'coso+dsina
qg=Xx'"sino—dcosa
RP=(xY+ () +d.

AY is the discrete fault surface element, and the center of the surface element is
positioned such that x=y =0, z= —d (x’ and y’ in Equation (A2) refer to this
origin centered at the center of the surface element). Again, depending on the fault
dip, if the depth d is considerably less than the dimensions of an imbedded fault
surface element, a short-wavelength component will be present in the vertical
displacement field because of the asymptotic behavior of term 1 in Equation (A2).
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